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1 Preface

Location: House 6, Lecture Hall - Campus Nord
Time: Tue., 16:00-18:00
Contact: https://itb.biologie.hu-berlin.de/~schleimer
Practical: 1 week end of semester

1.1 Content Summary

Nerve tissue is comprised of excitable cells, supporting cells and a surrounding bath. This seminar lecture
reviews the biophysical basics of excitability, including the stochastic processes that govern voltage-gated
ion-channels in nerve membranes. The composition of ion channels, among other factors, determines the
functional properties of action potential pulses, which are analysed using dynamical systems theory. The
statistics of pulse trains is derived from the microscopic level of ion-channel fluctuations. This will also
serve the understanding of a self-consistent description of macroscopic neural-network dynamics.

1.2 (Dis)claimer

This scriptum shall evolve. It will have flaws (didactic ones and outright errors) but you, the reader,
student, search bot, provide the selective pressure to improve it. Please write to the lecturer if you find
fault of any kind with it.

Although written in a somewhat formal fashion the book is by no means a text in applies mathematics.
It completely lacks the mathematical rigor to meet such standards. The choice of wrapping statements in
definitions, observations and propositions arose from the need to be able to easily refer to them and to
render the logical buildings blocks of some arguments easier to identify and follow through the text. Let’s
see how that worked out . . .
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2 Overview

There are many different lectures on “the biophysics of computation”, or “computational neuroscience”.
The topic by now is so vast, that only a small non-exhaustive subset of the subject can be discussed
within the temporal confinement of a lecture. This one is no different.

The idea here is to approach questions like “What is a nerve impulse?” or “Are there different types of
excitability?” from a mathematical and a biophysical angle.

From the biophysical point of view, one has to addresse the many buidling blocks of nervous systems:
There is needs to understand the biophysics of lipid sheets and the chemical gradiente across them.
Voltage-gated ion channels swimming in the membrane should be understood, including their stochastic
dynamics. What is going on in the extracellular medium might be a topic. And of course what are the
consequences of wiring neurons in networks via synapses or gap-junctions. Also the enourmous energetic
demands of nerve tissue are important factors in understanding its structure and function.

Many of these components of nervous systems derive from preadaptations, meaning precurses have been
arround long before the first nervous system emerged some 600 Myr ago. This is certainly true for
excitability, which is found in singe celled Paramecium and even bacteria. Synaptic components like the
SNAR complex is present in fungi and some of the transmitters are used in bacterial communication.

Naturally, there is a risc of getting overwelmed by these beautiful details. To explain the complexity of
nervous systems ab initio seems a mindbogglingly difficult task. Yet, there are already all-atom simulation
of ion channels in the membrane. Still, before and during discussing the structural aspects it is insightful
to ask what are the exigences of a nervous system. Not in any teleological sense, theoretical biology is
over that, but from an evolutionary standpoint. One may even formulate certain desiderata, without
claiming that brains were design by anyone.

2.1 Levels of explanation

If by attending the lecture or goint through its notes the amount of confusion becomes unbearable
Tinbergen’s levels of analysis might help

Diachronic view of historical sequence Static view of current form
Proximate cause Ontogeny Mechanism
Ultimate cause Phylogeny Function

While, categories and schemes like the above are of utility in structuring ones thoughts about nature, they
should not be taken as dogmatic fences that do not allow you to think, speculate outside of them. Nature
is to beautiful to get involved into dogmatic fights over reified wordings, leave them to the humanities.

Roughly one might associated certain disciplins of applied math that can be utilised in the four categories
from above.

Diachronic view of historical sequence Static view of current form
Proximate cause Control theory Dynamical systems, Stochastic

processes
Ultimate cause Information theory, Optimisation Filter theory, Triggered ensembles
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3 The Floquet theory of the action potential

3.1 Periodic event

Of many natural systems we observe only some drastically obvious events, while the underlying complex
evolution of all state variables is hidden. The malatonin falling level below threshold (in the suprachiasmatic
nucleus) causes a “waking-up event”. Results the complex regulatory network causing gap phase 1 →
synthsis → gap phase 2 → mitosis transition result in clearly visible cell division events. Sadly, extinction
events can be the results of changes in complex foodwebs, the dynamics of which is not completely
determined. Action potentials are no different. The dynamics involves charging the cell membrane and
the nonlinear kinetics of several ion channels, but the electric impulse is an clearly detectable event (with
a glass electrode at least).

3.2 Pulse-based communication

Why do nervous system use pulses, called action potentials or spikes to communicate? In fact, not all do.
The information picked up by your photo receptors is processed by cells in the retina (amacrine cells,
horizontal cells) still as graded potentials, which are then recoded into a impulse based representation.
Conversely, the visusal system of flys starts out with pulses representation and converts it to graded
potentials upstream. Last but not least, the small nervous system of nematode C. elegans (302 neurons)
seemed to operate entirely on graded potentials. No spikes had been reportet for a long time. But in
2018 someone found Ca2+ based spikes in one of their neurons.

One of the differences between passive graded potential and an active action potential is that the latter
does not suffer from the same kind of siganl degradation over long distances. There could be active more
or less graded potentials, but these are less temporally precise as a short pulse and it turns out that many
computations rely on on exactly this temporal precession.

A neurobiological “dogma” states that action potentials follow the all-or-nothing principle (E.D. Adrian
and Zotterman 1926). Fortunately, the jelly fish Aglanta digitalae does not care much for dogmas and
encodes its swimming patterns in different action potential shapes. So its not really a dogma or even a
principle. But most action potentials really are very stereotypical events, hence its a common property.
The all-or-nothing property can be construed to mean that the exact shape of the action potential does
not matter1 and that information is instead stored in the exact spike times or the frequency of their
occurence.

This can be formalised to mean that the voltage evolution ought to be represented by a shifted pulse
wave form

(1) v(t) =
∑
k A(t− tk) = A(t) ∗

∑
k δ(t− tk),

where tk are the spike times, which need to be defined later.

It also means that the action potential A(t) should be stable under perturbations, but that inputs ought
to be able to shift the occurrence of spikes in time. In mathematical terms, these desiderata read

i) The action potential must be stable in amplitude,
ii) yet neutrally stable in phase.

1Actually it does, if you bring energetic considerations into baring.
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To wit, (ii). just means that stimulus induced phase shifts should neither decay nor blow up.

3.3 Tonic spikes are limit cycles

The mathematical object that suffices the desiderata (i) and (ii) are limit cycles. They are closed orbits in
phase space. Naturally, the state space need to be at least two dimensional for it to contain a limit cycle.
What are the state variables? The membrane voltage, v(t), typically in milivolts sounds like a reasonable
one, at least that is what electrophysiologist measure. The conformational state of the ion channels also
changes with time, ck(t), and so do ion concentration, say [K+]o. The exact governing equations are
going to be derived in the following chapters. For now, denote a vector of state variables as

~x =


v
c1
c2

[K+]o
...

 .

A general differential equation could have the following structure

(2) ~̇x = ~F (~x, ~α) + ~η(~x, t)
~F is the time independent (homogeneous) flow field. ~η is a (often assumed small), possibly time dependent
(inhomogeneous) perturbation to the system. ~α are system’s parameter. Parameters could be cell size
and other fixed properties, but also a constant applied bias current. The change of solutions in response
to variations in system’s parameter will be studied later.

In the absence of perturbations, ~η = 0, Eq. (2) becomes a homogeneous ordinary differential equation

(3) ~̇x = ~F (~x, ~α).

We are interested in the cases in which, at least for cerctain parameter values ~α, ∃ a P -periodic limit
cycle solution, with ~xlc(t) = ~xlc(t+ P ), also known as periodic orbit. This solution is identified as the
action potential if it sufices the requirements of amplitude-stability and time-shiftability (i) and (ii).

3.4 Limit cycle stability

Stability of is probed by studying small perturbation to an invariant set solution. Our invariant set is the
limit cycle (periodic orbit) ~xlc. Assuming there was a small perturbation to the system the solution can
be decomposed as

(4) ~x(t) = ~xlc(t) + ~y(t)

with ∀t : ‖y(t)‖ < ε some “small” perturbation to the orbit. What small, i.e., ε is we do not want to say
now, maybe later, lets see . . .

Assuming the perturbation was transient (only in initial conditions) and the system is homogeneous again
we plug the Ansatz of Eq. (4) into Eq. (3) and get
d
dt~xlc(t) + ~̇y(t) = ~F (~xlc) +∇~F (~xlc)︸ ︷︷ ︸

J(~xlc(t))

·~y(t)

The Jacobi matrix evaluated on the limit cycle can be written as a function of time J(t) = ∇~F (~xlc(t)).
Note that since the limit cycle solution is P -periodic, so is J(t) = J(t+ P ).

Identifying the limit cycle solution above we are left with the first variational equation of Eq. (3)

(5) ~̇y(t) = J(t)~y(t).
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Hence, one needs to study of linear system with periodic coefficients. One solution of Eq. (5) can be
guessed, let us try the time derivative of the orbit, d~xlc

dt

(6) d
dt (

d~xlc
dt ) = d

dt
~F (~xlc) = ∇~F (~xlc) d

dt~xlc = J(t)d~xlc
dt .

So it is a solution alright, and it happens to be a P -periodic solution. This solution is called the Goldstone
mode. But for arbitray intitial conditions not all solutions should be periodic.

Def: Floquet Ansatz According to Floquet theory the solution to Eq. (5) can be written in the form of
a P -periodic similarity matrix2 and an matrix exponential

(7) y(t) = R(t)etΛ.

For the proof please consult (Chicone 2006), here we are just goint to work with this as an Ansatz. The
constant matrix Λ is called the Floquet matrix.

Recall the matrix exponential

Def: Matrix Exp Let A ∈ ICn×n then expA =
∑∞
k=0

1
k!A

k A useful corollary of this definition is that the
eigen vectors of an exponentiated matrx are the same as those of the original and eigenvalues become
exponentiated. If λi, ~wi are the eigenvalue, eigenvector pairs of the matrix A, i.e., A~wi = λi ~wi
then by using this identity k-times

(8) eA ~wi =
(∑∞

k=0
1
k!A

k
)
~wi =

∑∞
k=0

1
k!λ

k
i ~wi = eλi ~wi

Inserting the Floquet Ansatz into Eq. (5) yields

ṘetΛ +R(t)ΛetΛ = J(t)R(t)etΛ.

Which by multiplying with e−tΛ results in a dynamics equation for similarity matrix R.

(9) Ṙ = J(t)R(t)−R(t)Λ.

Remember that R was invertable so one can also derive an equation for the inverse

(10) d
dtR

−1 = −R−1ṘR−1 = ΛR−1(t)−R−1(t)J(t).

3.4.1 Eigensystem of the Floquet matrix

The Floquet matrix, Λ, is constant, though not necesarily symmetric. Hence it has an orthonormal left
and right eigensystem

(11) Λ~wi = µi ~wi and ~ziΛ = µi~zi with ~zi · ~wj = δij .

The µk are called Floquet exponents, for reasons becomming obvious below. One can now define a
“rotated” eigensystem

Def. 1 (“Rotated” eigensystem and Floquet modes)

The rotated eigensystem of a spike is ~Wi(t) = R(t)~wi and ~Zi(t) = ~ziR
−1(t). For which ipso

facto obeys

(12) ∀t : ~Zi(t) · ~Wj(t) = δij .
~Wi(t) and ~Zi(t) are also called the Floquet modes.

If we project the eigenvectors on the Eqs. (9) and (10) and use this definitions we get

(13) d
dt
~Wk = (J(t)− µkI) ~Wk(t)

and

(14) d
dt
~Zk = (µkI − J†(t))~Zk(t).

2For now this means that its an invertable matrix; ∀t : ∃R−1(t)
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As a final test of what has been chiefed by introducing the new time-dependent coordinate system of the
right and left Floquet modes, project the general solution y(t) from Eq. (7) on the the adjoint Floquet
modes, Zk(t):
~Zk(t) · ~y(t) = ~zkR

−1(t)R(t)etΛ = ~zke
tΛ = ~zke

tµk .

Along these rotating basis one observes a simple exponential contraction or expansion depending on the
sign of the Floquet exponents. The maginitude of the Floquet exponents is the rate of convergence in
units of 1/Time. What if a Floquet exponent is zero? In fact, by comparing Eq. (6) and (13) one may
observe that the Goldtone mode is alwasys a solution to the

Note that if µ0 = 0,

(15) ~W0(t) = d
dt~xlc(t)

is the Goldstone mode, and from Eq. (12)

(16) ~Z0(φ) · d
dt~xlc(φ) = ~Z0(φ) · ~F (~xlc(φ)) = 1

W.l.o.g, let the Floquet exponents of a stable limit cycle be ordert such that

0 = µ0 > µ1 > ... > µn−1

What are left Floquet modes useful for? Here is an example. First, rewrite Eq. (14) for k = 0 in the form

( d
dt + J†(t))~Z0 = 0

Say one is interested in the change of the period of a limit cycle oscillator w.r.t. a parameter change. By
rescaling time
d~xlc
dt − P (α)~F (~xlc, α) = 0

Taking the total derivative (and chain rule) one finds
∂
∂α

d~xlc
dt −

∂P
∂α

~F − P ∂ ~F
∂α − P∇~F

∂~xlc
∂α = 0

The derivatives of the first term can be excanged. Now project the equation from the left onto the zeroth
Floquet mode

−∂P∂α (~Z0 · ~F )− P (~Z0 · ∂
~F

∂α ) + ~Z0 · ( ddt − PJ(t))∂~xlc
∂α = 0

The last term can be rewritten by transposing the operator

~Z0 · ( ddt − PJ(t))∂~xlc
∂α = − (( d

dt
+ PJ†(t))~Z0)︸ ︷︷ ︸

=0

·∂~xlc
∂α

Hence

(17) ∂P
∂α = −P (~Z0 · ∂

~F
∂α )
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4 Spikes event time series and isochrons

4.1 Spike times and Isochrons

There is still a lack of a formal definnition of the spike time tsp in Eq. (1). Electrophysiologists typically
envision a voltage threshold, but these would only exist if the voltage dynamics was a one dimensional
equation, which it is not. In fact, it can not be if true limit cycles are to exist. In the general state-space
of action potential dynamics there may exist a generalised threshold manifold. A reasonable alternative
definition would take the (local) peak/maximum of the voltage

v(tsp) = vmax.

Again, a definition based on properties of the state variables and it also leaves all other dimensions
undefined. The general problem seems to be to uniquely associate time with states. If the dynamics was
restricted to only on the limit cycle this is easy. As the maximum voltage value is only reached once per
spike it also implies unique values for the other state variables, wich can be called the spike boundary
condition: ~xsp. Most importantly it also implies a unique time indices at which such events occur,
~xlc(tsp) = ~xsp. The normalised time index of points on the limit cycle is also called the phase, φ ∈ [0, 1)
s.t. ~xlc(Pφ) = ~xlc(P (φ+ 1)). Given synaptic bombardment, intrinsic noise and other perturbations the
dynamics, however, may be temporarily not exactly on the limit cycle. The simple idea is that the time
phase of any point in the basin of attraction of a limit cycle can be defined as the phase it converges back
to when asymptotically approaching the limit cycle. To make this precise, first define the flow:

Def. 2 (Flow of an ODE)

For a given initial condition ~x0 ∈ B ⊂ IRn, where B is the basin of attraction of the limit
cycle, the flow or trajectory induced by the ODE in Eq. (3) is denoted as ~x(t;x0).

Numerically, the flow can be evaluated by forward-integration of the ODE starting at a given initial value.

Def. 3 (Assymptotic phase)

For point ~y ∈ B, in the basin of attraction of the limit cycle solution of Eq. (3), the asymptotic
phase, ψ, is defined as

(18) ψ(~y) = argminψ limt→∞ ‖~x(t− ψP ; ~y)− ~xlc(t; ~xsp)‖.

Note that the limit cycle solution was initiated at time t = 0 at the spike boundary condition. Based on
the asymptotic phase, the concept of isochrons can be introduced (Winfree 1974; Osinga and Moehlis
2010) as the level sets of constant phase:

Def. 4 (Isochrons)

The isochron manifolds, I(φ), are the level sets of the asymptotic phase variable

I(φ) = {~y ∈ B : ψ(~y) = φ}.

An isochron defines a n− 1 dimensional manifold of points that converge to the same asymptotic phase
on the limit cycle.

Based on the isochron one can now define a spike as a crossing of the flow/trajectory with I(0).

Note: There are several other ways to define a phase (Hilbert transform, linear interpolation between
spikes, . . . ). In principle, there should be monotonous mappings between each other.

13



4.2 Neutral dimension and phase shifts

An alternative to studying the high dimensional set of coupled nonlinear biophysical equations is to find
an (approximately) input/output(I/O)-equivalent equation for the phase evolution like in Fig. 1 . In the
figure the phase is ploted as modulo 1. However, it is also convenient to consider the freely evolving phase
since this is related to the spike count process,

N(t) = bφ(t)c.

The kth spike time is then defined as

φ(tsp
k ) = k.

A spike-train can be written as

(19) r(t) =
∑
k δ(t− t

sp
k ) =

∑
k δ(φ(t)− k).

Def. 5 (I/O-equivalent phase oscillator)

An I/O-equivalent phase oscillator produces with its threshold crossing process the same spike
times {tsp

k }k as a particular conductance-based model (Lazar 2010).

Fig. 1

The phase equation turns the spiking neuron into a one-dimensional level-crossing process
with equivalent spike times. The phase is plotted modulo 1.

The evolution of the phase of Eq. (2) is given by the chain rule as
dφ
dt = ∇φ(~x) · d~x

dt .

To first order this is

(20) dφ
dt = ∇φ(~xlc) · d~xlc

dt = ∇φ · ~F (~xlc) +∇φ · ~η(~xlc, t).

The geometric interpretation of the phase gradient, ∇φ, is that it points perpendincular to the isochrons
towards the steapest change of the asymptotic phase variable φ.

4.3 The empirical infinitesimal phase response curve

Def. 6 (empirical PRC)

Given a short δ-pulse of amplitude ε, delivered at a certain phase, φ, (time point) in the
inter-spike interval of a tonically firing neuron the linear phase response is defined as

PRC(ψ) = lim
ε→0

1
ε
P0−Pε(ψ)

P0
.

14



The underlying assumption of interpreting PRC is that it is a function, PRC(ψ) : [0, 1) 7→ IR,
that mapps phase or time of occurence of a perturbation to a persistent measurable phase
shift. (Please appreciate how idealised and “noise free” these definitions are.) The convention
is that a prolongation of intervall corresponds to a phase delay, while shortinging means phase
advance.

The perturbed period can be written as the original period minus the phase shift converted back to time
(by multiplying with the unperturbed period)

Pε = P0 −∆φP0.

Given that the time evolution of φ(t) has been perturbed at some time point ψP0 < P0, The phase shift
can be measured at the spike time of the unperturbed system as

∆φ = φ(P0)− 1.

The empirical PRC in Def. 6 can then be expressed as

PRC(ψ) = 1
ε
P0
P0

(1− (φ(P0)− 1)− 1) = 1
ε (φ(P0)− 1).

Apply the identify operator of functions (convolution with a δ-function) on the left and the fundamental
theorem of calculus on the right hand side then to first order

εP0
∫ P0

0 PRC(φ(t))δ(ψ − φ(t))dt =
∫ P0

0 (φ̇− 1
P0

)dt

This step is not really allowed, but for well behaved integrals we can identify the integrands to see

φ̇ = 1
P0

+ εPRC(φ)δ(ψ − φ).

One can bring this equation in agreement with the phase evolution in Eq. (20), if one identifies

∇φ(ψ) = PRC(ψ) and ∇φ(ψ) · ~F (ψ) = 1
P0

= f0.

4.4 Constant phase shift and adjoint equation

The assumption underlying the experimental proceduce described in Def. 6 is that the phase shift stays
constant in time, say ∆φ. Without perturbation there is not long-term shift of the phase. Hence it must
be the perturbation off the limit cycle which causes the phase shift. The phase change must be due to
the ∆~x(t) and is given by

∆φ = ∇φ ·∆~x(t) = const. From d∆φ
dt = 0 one gets

0 = d
dt∇φ ·∆~x+∇φ · d

dt∆~x

Again the evolution of ∆x(t) can be linearised if it is small

0 = d
dt∇φ ·∆~x+∇φ · J(t)∆~x = ( d

dt∇φ+ J†(t)∇φ) ·∆~x

Such that by Fredholm’s alternative
d
dt∇φ = −J†(t)∇φ

This is the same ODE as for the zeroth left Floquet mode, rendering them identical up to scaling.
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5 The continuum limit of a membrane patch

Motivation and aim

In this lecture ion channels are introduced as stochastic devices floating in the membrane of a nerve cell.
It should motivate why the analysis techniques and models introduced in this lecture need to deal with
fluctuations and noise. (Nerve) cells produce stochastic processes on several levels:

1. The ion channels in their membrane stochastically jump beteen conformations, governed by Master
equations.

2. On a more macroscipic level the their membrane voltage fluctuations show properties of coloured
noise, well described by diffusion processes and stochastic differential equations.

3. The trains of action potentials they emmit from point processes.

In the stationary state these processes can be subjected to spectral analysis.

Note that in 1952, the first equations describing membrane voltage dynamics where the deterministic
rate equations by Hodgin & Huxley (Hodgkin and Huxley 1952). Only in 1994 Fox and Lu derived
these equations from the continuum limit of an ensemble of stochastic ion channels (Fox and Lu 1994).
Essentially, this was a chived by doing a diffusion approximation in the thermodynamic limit of many ion
channels.

Finally, in 1998 the structure of a K+ ion channel from Streptomyces lividans, which is nearly identical to
Drosophila’s shaker channel was discovered using X-ray analysis (Doyle 1998).

Since then the nuences of appllying diffusion approximations to neurons have been investigated (Linaro,
Storace, and Giugliano 2011,Orio and Soudry (2012)) and reviewed (Goldwyn et al. 2011,Goldwyn and
Shea-Brown (2011),Pezo, Soudry, and Orio (2014)).

5.1 Empirical assertions about ion channels

Observation 1 (Conserning the ion channels of excitable membranes)

i) Ion pores show different degrees of selectivity to ionic species. Understanding of the mechanisms of
the ionic filter was achieved by structural analaysis (Doyle 1998). Potassiume channels conduct K+

1000 fold more than Na+ and allow for conduction rate of 108 ions per second.

ii) In single channel patch experiments ion channels how discrete levels of conductivity, which look like
a Telegraph process.

iii) Independent ion channels (no cooperativity or spatial heterogeneity)

iv) Membrane bound proteins like many others change conformation on various triggering signals:

• a change in pH
• a change in the surrounding electric field
• mechanical preassure
• ligand binding

To relate measured voltage changes to ion flux accorss the membrane note that according to Kirchofs law
and electro neutrality
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C dv
dt = FΩ

A

(
d[Na+]i

dt + d[K+]i
dt + d[Cl−]i

dt

)
The currents are assumed to follow Ohms law:
FΩ
A

d[K+]i
dt = γNK(EK − v)

where γ is the unitary conductance and N is the total number of open pores.

5.2 First-order rate kinetics

Starting with a hypothetical ion pore of which there is a fixed total concentration, [Pore]=const. The
pore an open conformation, O, in which, say only K+, ions can pass and a cloased states, C, which blocks
ion flow completely:

Def. 7 (Two-state ion-channel)

C
α


β

O

Based on the law of mass-action, the corresponding first-order rate equation is
d[O]
dt = α[C]− β[O] = α([Pore]− [O])− β[O]

The second equality is by conservation of mass [O] + [C] = [Pore] = const.

has the typical strucutre of its stochastic counter parts the Master equation of a birth-death process.

Hodgkin and Huxley normalised the equation by defining n(t) = [O]
[Pore] .

dn
dt = α(1− n)− βn =

(
α

α+β − n
)

(α+ β) = (n∞ − n)/τ

Under a voltage-clamp experiment, for each voltage level this equation predicts an exponential charge up
to a level n∞ with the time constant τ that could be fitted.

Hodgkin and Huxley discovered that their measured traces could not be fitted well by the above equation.

Def. 8 (A tetrameric K+ pore)

0
4α


β

1
3α


2β

2
2α


3β

3
α


4β

4

5.3 The ion channel as a Markov model

Instead of writing down heuristic macroscopic laws for channel concentrations, one can attempt to derive
them from microscopic dynamics of single pores. For this the state diagram in Def. 7 is reinterpreted as
the state of a single molecule.

Based on Obs. 1 such single channel dynamics can be described by a finite state Markov model which is
mathematically described as a Master equation.

A Markov model represented by a graph like Def. 8 is a special kind of chemical reaction network studied
in systems biology. The connectivity/topology can be stored in a

Def. 9 (Stoichiometry matrix)

The stoichiometry matrix,N ∈ INm×n describes n reactions (transitions) involvingm chemical
species (states). It can be decomposed into the educt matrix E and the product matrix P by
N = P −E
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The stoichiometry matrix of Def. 8 would look like

N =


−1 0 0 0 1 0 0 0
1 −1 0 0 −1 1 0 0
0 1 −1 0 0 −1 1 0
0 0 1 −1 0 0 −1 1
0 0 0 1 0 0 0 −1


In addition one needs the rate vector

~v = [4α, 3α, 2α, α, β, 2β, 3β, 4β]T

to define the complete reaction network for the channel.

To understand the dynamical evolution of occupation propability of different conformational states,
take the two-state channel as an example. Define a vector of the probability of being closed and open,
~p = [pC , pO]†, respectively.

In actuality the channels are part of the membrane dynamical system, where α and β depend at least on
v and hence are not constant during a spike. One needs an update rule of how to get from the probability
of being open at time t to the probability of begin open at time t + dt. Given are the rates, so the
propabilities of change in an interval of time dt are the rates times the interval length, e.g. dt β. For the
two state channel this cann be summarised in matrix notation(
pC(t+ dt)
pO(t+ dt)

)
=
(

1− αdt β dt
α dt 1− β dt

)(
pO(t)
pC(t)

)
or in vector form

~p(t+ dt) = (I +Qdt) ~p(t)

The infinitesimal limit yields a kind of Kolmogorov forward-equation

(21) d
dt~p = Q~p.

Def. 10 (Transition rate matrix)

The transition rate matrix (or infinitesimal generator) is Q ∈ IRm×m.

In general the transition rate matrix can be obtained from the graph

Q = N diag(~v)ET.

Exercise 1 (Transition rate matrix)

Derive Q of a three state channel

0
3α


β

1
2α


2β

2
α


3β

3

Note that Eq. (21), though a consistent description of the occupation probabilities, does not give us
realisations or sample paths comparable to the traces measured in single-channel patch clamp experiments.

5.4 Sample path of a telegraph process (simulation a jump process)

Given a total number of ion channels N , the goal is to track the actual number of channels in a particular
state. Based on reaction rate theory and given a certain reaction rate a, the number k of reaction events
in a time window is

k ∼ Poisson(a) = ake−a

k! .

If several reactions can occur and several molecules are in volved then (because Poisson distribution is
closed under convolution) one has
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k ∼ Poisson(
∑
j

Njaj︸ ︷︷ ︸
λ

).

So the rate of the occurence of any reaction is given by this linear combination of the rates of individual
reactions. The waiting time distribution between reactions is exponential with the same rate:

p(t) = λe−λt

Starting in a particular state ~N = [N1, ..., Nn] at time t0 the life time of staying in that state until t0 + t is

The escape rate of the state is (any reaction occuring)

λ =
∑n
k=1Nkak

where ak are the rate of leaving state k. For example a3 in the K+-channel is

a3 = 2β + 2α

But which reaction did occur? Let j be the reaction (not the state!). For example, there are 8 reactions
in the K+ channel. The probabilities of occurance associated with any one of them is

p(j) = Njaj∑Nreac
k=1

Nkak
= Njaj/λ

In a computer algorithm one can draw the waiting time for the next reaction simply by generating a
uniform random number r1 ∼ U(0, 1) and then

τ ← ln(r−1
1 )/λ

The reaction is determined with a second random number r2 ∼ U(0, 1)

P (j) =
∑j
k=1 p(k)

j ← argmaxjP (j) < r2

while
r1 = rand
r2 = rand
tau = ln(1/r1) / a

5.5 Statistical properties

With pC = 1− pO we can express one row of this equation as

ṗO = αpO − β(1− pO)

or

τ ṗO = p
(∞)
O − pO with τ = 1

α+β and p(∞)
O = α

α+β

which has solution

pO(t) = p
(∞)
O (1− e−t/τ )

Fourier transformation leads to

τ iωp̃(ω) = p
(∞)
O − p̃(ω)

or

p̃(ω) = p(∞)

1+iτω

|p̃(ω)|2 = p̃(ω)p̃∗(ω) = p(∞)

1+(τω)2

a Lorenzian spectrum. Inverse Fouerier transform yields the covariance function
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c(τ) = 〈pO(t)pO(t+ τ)〉

An ionic current produced in the open state would be

I ion = γK+NO(EK+ − v)

γK+ and EK+ are the unitary conductance and the Nernst potential respectively. The average such
current would be

〈I ion〉 = γK+NpO(EK+ − v)

where N is the total number of channels in the membrane patch under consideration. But what about a
particular stochastic realisation of the current, what about the fluctuations around the mean?

If we have N channels than the number of k of them being open is binomially distributed

PO(k) =
(
N
k

)
pkOp

N−k
C

5.5.1 The n-state channel

Let us try to calculate the statistics of the current originating from an n-state channel (just like in the
two state case). Why would one do this? The idea, later on is to be able to find a continuous stochastic
process that we can simulate and analyise easily.

Let K(t) ∈ [1, ..., n] be the realisation of the n-state Markov channel. For example a K+-channel with
four subunits

0
4α


β

1
3α


2β

2
2α


3β

3
α


4β

4

For the K+ channel with n = 4 conformations states, of which one is conducting, let us further define

G(t) = δ4K(t) =
{

1 : K(t) = 4
0 : K(t) > 1.

If there are several conducting states (with possibly different conductance level, one could have e.g.,
G = δ2K(t) + 2δ4K(t).

The single channel current at a voltage clamp v(t) = v is then

(22) I(t) = γG(t)(E − v).

How does it evolve? Define pi(t) = P (K(t) = i) and ~p(t) = [p1, ..., pn]†, then

(23) d
dt~p = Q~p

With formal solution

~p(t) = eQt~p(0) = (eQ)︸︷︷︸
M

t
~p(0) = M t~p(0)

Use the singular value decompostion, M = U ΣV †, the matrix power can be written as M t = U ΣtV †.
Or (recall Eq. (8))

(24) ~p(t) =
∑n
k=1 ~uk~v

†
ke
νkt~p(0).

If Eq. (23) has a stationary distribution in the t→∞ limit, then this must correspond to the eigenvalue
ν1 = 0 (let us assume they are ordered). So d

dt~p(∞) = 0 =⇒ for ~p(∞) = ~v1,∃ν1 = 0 : Q~v1 = ν0~v1 = 0.
Therefore, the solution can be written as

(25) ~p(t) = ~p(∞) +
∑n
k=2 ~uk~v

†
ke
νkt~p(0).

The average channel current of Eq. (22) is

〈I(t)〉 = γ(E − v)
∑n
k=1 pk(t)δ1k = γ(E − v)(p1(∞) +

∑n
k=2 u1kv1kp1(0)eνkt),
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which if the chain is stable (νk < 0 : ∀k > 1) has steady state

〈I〉 = limt→∞〈I(t)〉 = p1(∞).

The steady state covariance C(∆) = limt→∞ in this case is

Ct(∆) = 〈I(t)I(t+ ∆)〉 − 〈I〉2 = γ2(E − v)2∑n
j,k=1 δ1jδ1k pj(t)pk(t+ ∆)− 〈I〉2

Hence

Ct(∆) = p1(t)p1(t+ ∆)− 〈I〉2 =
∑n
i,j=2[~ui ~v†i~vj︸︷︷︸

=δij

~u†i ]11e
νit+νj(t+∆)

If νk < 0 : ∀k > 1 then

(26) C(∆) =
∑n
i=2 u1iu1ie

νi∆

is a sum of exponentials. The spectral density is a superposition of Lorenzians.

5.6 Statistically equivalent diffusion process (Orenstein-Uhlenbeck
Process)

The jump process discussed in the previous sections is a continuous time Markov-process on a discrete
domain, K(t) ∈ IN with t ∈ IR. A diffusion process is a continuous time Markov-process on a continuous
domain, η(t) ∈ IR with t ∈ IR.

Can are in search for a a diffusion process such that

I = γ (p1(∞) +
∑n
k=2 ηk(t)) (E − v)

has the same first and second order statistics (in voltage clamp) as Eq. (22)? Let us try

(27) τk(v)η̇k = −ηk + σ(v) ξ(t) where 〈ξ(0)ξ(∆)〉 = δ(∆)

To solve it, use the Fourier Transform

iωτη̃(ω) = −η̃(ω) + σ χ(ω)

The place holder symbold χ was introduced for the Fourier transform of the stochastic process ξ(t).
Rearanging yields

η̃ = σχ(ω)
1+iωτ

The spectrum is

η̃(ω)η̃∗(ω) = σ2χ(ω)χ∗(ω)
1+(τω)2

By definition χ(ω)χ∗(ω) is the Fourier Transform of the covariance function δ(∆) and from Eq. ((???))
this is one. Hence,

η̃(ω)η̃∗(ω) = σ2

1+(τω)2

Applying the inverse Fourier transform results in the correlation function

C(t) = σ2

τ e
−|t|/τ .

A super position of independent such OU process∑n
k=i ηi(t)

leads to a correlation function with the same structure as in Eq. (26). We identify τi = 1/νi and σi = u1i.

The idea of matching the second order statistics can be formulated in a far more abstract way in terms of
the Kramers-Moyal-van-Kampen expansion of the Master requation
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ṗ =
∫
w(x′ → x)p(x′, t)− w(x→ x′)p(x, t)dx′

∂p(x, t) =
∑∞
n=1

∂n

∂xnKn(x, t)p(x, t)

from
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6 Continuation of fixpoints and orbits

Often small changes, say in an ion channel density, has only small quantitative effect on a neurons
behaviour.

Often numerical solutions to nonlinear ordinary differential equations are found by (forward) time-
integration. An interesting alternative is to track a found solution through parameter space, for which the
solution must be persistent in a certain parameter. If it is not, then a bifurcation occurs and one observes
a qualitative change of the solution. The study of system solutions under parameter perturbations is also
the subject of sensitivity analysis.

For book on bifurcation theory consult (Izhikevich 2007) and numerical bifurcation analysis (Kielhöfer
2011).

6.1 Continuation of fixed points

Asume for

~̇x = ~F (~x, α)

there is a steady state solution

(28) ~F (~x, α) = 0

In biological systems like cells, parameters are rarely stable over longer periods, because there is a
continuous turnover (synthesis and degradation) of all molecules. Hence, so one should be interested in
families of solutions for varying prarameters, ~x(α).

Def. 11 (solution banch)

A branch, familiy or curve of solutions with regard to an index parameter α is denoted as
~x(α).

The existence of the solution as a function of the parameter is governed by the implicite function theorem:

Theorem 1 (Implicite function theorem)

Consider a system of equations
~F (~x, α) = 0, with ~F ∈ IRn, ~x ∈ IRn, α ∈ IR and ∇x,α ~F ∈ IRn×n+1.

Let f and ∇x,α ~F be smooth near x. Then if the Jacobian ∇x,α ~F is nonsingular, ∃ a unique,
smooth solution family ~x(α) such that

~F (~x(α), α) = 0.

This establishes the existence of lines in a bifurcation diagram.
The method of continuation is a predictor-corrector method. In practice, assume the fixpoint is known
for one particular parameter value α0, then for a small change in parameter the solution is is predicted

Predictor step: Taylor’s linearisation

(29) ~x(p+ δp) ≈ ~x(p) + δp∂~x∂p .
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To predict the new solution, the old solution is required and the derivative of the solution w.r.t. the
parameter that is changed. How to compute the latter? Take the total derivative of Eq. (28) w.r.t. the
parameter

(∇xf)∂~x∂p + ∂ ~f
∂p = 0.

with formal solution
∂~x
∂p = −(∇x ~f)−1 ∂ ~f

∂p .

If ∇x ~f is full rank one can use some efficient linear algebra library to find the vector ∂~x
∂p and back insert

it into Eq. (29). For too large δp the predicted solution will be wrong. Yet, it is a good initial guess form
which to find the correct version.

Corrector step: Newton iterations to find the root of ~f(~x, p)

(30) ~xn+1 = ~xn − (∇x ~f)−1 ~f(~xn, p)

Actually that Newton’s iterations are also obtained by linearisation

0 = ~f(~xn+1, p) = ~f(xn) + (∇x ~f)(~xn+1 − xn),

which if solved for ~xn+1 yields Eq. (30).

Convergence analysis of Newton iterations yields that with each newton iterations the number of correct
decimal places doubles. Hence often a low number of iterations (3-7) suffice to achieve sufficient numerical
accuracy.

Example 2 (Continuation of the QIF model)

v̇ = I + v2 = F (v, I) with the solution branches v(I) = ±
√
−I.

From ∇vF = 2v and ∂F
∂I = 1, one gets ∂v

∂I = − 1
2v = − 1

2
√
−I . What happens at I = v = 0?

Example: Say f(x, p) =
√
x2 + p2 − 1, then the solution branches are x(p) = ±

√
1− p2. The linear

stability analysis ∂xf = x√
x2+p2

that

x > 0→ ∂xf > 0→ unstable
x < 0→ ∂xf < 0→ stable

Also ∂pf = p√
x2+p2

and thus ∂px = p
x = p

±
√

1−p2
. What happens at p = ±1 or x = 0?

Or more general: What happens if we find that the condition number of ∇~f explodes?

In the example above the branch switches its stability and it bends back in a fold or turning point. In
general folds can occure with and without stability change.

6.2 Local bifurcations: What happens if ∇~f is singular?

Bifurcatin analysis is one big “case discrimination” task. Luckily, and due to topology the cases are, given
certain constraints, finite.

6.2.1 Folds and one-dimensional nullspaces

Recall some difinitions

Def. (nullspace, kernel): The kernel or nullspace of a matrix J is

N(J) = {~x ∈ IRn|J~x = 0}

Def. (range, image): The range of a matrix J is
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X

p?

Numerical continuation

R(J) = {~y|∃x ∈ IRn : J~x = ~y}

Def: Let Q be the projection onto the range
Def: Eigensystem at the fold. Let Jacobian matrix J = ∇~f(~x(0), p(0))

J~rk = λk~rk and ~lkJ = λk~lk.

So that the nullspace is spanned by ~l0.

This section considers dimN(J) = 1. Hence, the implicite function theorem is not applicable. From
the example above it is apparent that ~x′(p) =∞ at the bifurcation. The problem can be circumvented
by defining a new “arclength parameter”, p(s). The bifurcation branch is then a parametric curve,
(~x(s), p(s)). Without loss of generality the bifurcation is to be at s = 0.

If the Jacobian matrix J = ∇~f is rank-deficient the Lyapunov-Schmidt reduction can be applied.
Intutiefely the problem is reduced from a high-dimensional, possibly infinite-dimensional, one to one that
has as many dimension as the deffect of ∇~f .

The nullspace is spanned by the eigenvector, r0 of J , corresponding to the eigenvalue 0.

Assume that f is twice differentiable w.r.t. ~x, then differentiate ~f(~x(s), p(s)) = 0 w.r.t. s and evaluate at
s = 0

(31) d
ds
~f(~x(s), p(s)) = ∇x ~fx′(s) + ∂p ~fp

′(s) = J~x′(s) + ∂p ~fp
′(s)

Let H = ∇∇x ~f be the Hessian tensor.
d2

ds
~f = H~x′(s)~x′(s) + J~x′′(s) + ∂2

p
~fp′(s) + ∂p ~fp

′′(s) = 0

At s = 0 one has p′(0) = 0 and hence from Eq. (31) ~x′(0) = ~r0. Projecting onto the left-eigenvector ~l0 to
the eigenvalue 0. at s = 0 one finds
~l0H~r0~r0 +~l0∂p ~fp

′′(0) = 0

or with ∂p ~f 6∈ R(J)

p′′(0) = −~l0H~r0~r0~l0∂p ~f
.
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This is a test function of wether the bifurcation is

(i) subcritical (p′′(0) < 0)
(ii) superctirical (p′′(0) > 0)
(iii) transcritical

X

p

transcriticalsupercriticalsubcritical

Folds

Def: Let P be the projection onto the null space

There are several cases to be distinguised.

The fold: If the rank deficiency is one-dimensional, dimN(J) = 1.
The Andronov-Hopf: If the rank deficiency is two-dimensional.

6.3 Stability exchange

At a simple fold one eigenvalue is zero. Study the eigen system of J = ∇~f(~x(s), p(s)) near s = 0

J(~r0 + ~w(s)) = λ(s)(~r0 + ~w(s)).

With a bit of analysis

λ′(0) = −~l0 · ∂p ~f(~x(0), p(0))p′′(0)

6.3.1 Extended system

Continue the extened system (linear and nonlinear)
~f(~x(p), p) = 0

∇~f(~x, p)~w = 0

(∇~f(~x, p))T~z = 0

6.4 Continuation of boundary value problems and periodic orbits

The same procedure than above can be applied to the continuation of periodic orbits and boundary value
problems. Define the implicit function to encompass the time derivative

~g(~x, p) = d
dt~x− T ~f(~x, p) = 0, with t ∈ [0, 1].

Then proceed as above. Note that the time derivative d/dt is a linear operator which has a matrix
representation just like the Jacobian. in that sense

∇x d
dt~x = d

dtI

Def. 12 (saddle-node/fold bifurcation)
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The fixpoint defined by ~F (xsn, αsn) = 0 is a fold of a saddle and a node if

i) the Jacobian J(xsn, αsn) has one eigenvalue λ0(xsn, αsn) = 0 with algebraic multiplicity
one,

ii) ∂2λ0
∂α2 |xsn,αsn 6= 0

Def. 13 (Hopf bifurcation)

Assuming all but two eigenvalues have negative real parts, except for a conjugate pair of
purely imaginary eigenvalues.
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7 Normal forms, centre manifold and simple
spiking models

7.1 Example: Dynamics in the centre manifold of a saddle-node

At arbitrary parameters the periodic soluiton adjoint to the first variational equation on the limit cycle
yields the PRC. I can be calculated numerically with the continuation method. Near a bifurcation,
however, if major parts of the dynamics happen in the centre manifold the PRC can be calculated
analytically. As an example take the saddle-node on limit cycle bifurcation (SNLC). The spike in this
case is a homoclinic orbit to a saddle-node, that enters and leaves via the semi-stable (centre) manifold
that is associated with the eigenvalue λ0 = 0 of the Jacobian at the saddle.

r0centre

manifold

stable
manifold

Saddle-node on a limit cycle (SNLC). The dynamics on the stable manifold is fast ẋ = λ1x, while the
dynamics along the centre subspace is slow ẋ = bx2.

(32) ~̇x = ~F (~x) + p ~G(~x)(
cv̇
τṅ

)
=
(
I−I(n,v)
n∞(v)−n

)
Let there be a saddle-node (fold) bifurcation at some value p0 and the saddle-node position is ~x0. In the
previous lecture we noted that if the bifurcation is not transcritical (degenerated)
d2p(s)

ds2 = −~l0H~r0~r0~l0∂p ~F
6= 0

The change of the solution w.r.t. the pseudo-arclength parameter was
d~x
ds = ~r0.

Given that the linear part of the dynamics is degenerated at the bifurcation, one might look at the leading
nonlinear term.

Expanding the right-hand side around saddle-node fixpoint, ~x0, yields (B. Ermentrout 1996)
~F (~x0 + δ~x) = ~F (~x0) + J(δ~x) +H(δ~x)(δ~x) + ...

Establish the eigen system at the saddle-node J = ∇~f(~x0)
~lkJ = λk~lk and J~rk = λk~rk with lj · rk = δjk.

By assumption of a saddle-node the Jacobian has a simple zero with an associated eigenvector. All other
eigenvalues are exponentially contracting λk < 0,∀k > 0, while ~r0 is slow.

Def (centre subspace): The subspace spanned by ~r0 is called the centre subspace or slow subspace.
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Write the dynamics arround the saddle-node as ~x(t) = ~x0 + y~r0, and also use small changes in the
bifurcation parameter p0 + p. Then Eq. (32) is
d~x0
dt + ẏ~r0 = ~F (~x0, p0) + yJ~r0 + y2H~r0~r0 + p∂

~F
∂p .

Projecting this equation onto the left eigenvector ~l0 yields the isolated dynamics along the centre manifold:

(33) ẏ = ay2 + b with a = ~l0H~r0~r0 and b = p~l0 · ∂
~F
∂p .

Note: In the literature often y is suggestively written as v assuming the quadratic dynamics is a long
the voltage dimension. However, it can be shown that the centre manifold of a conductance-based
neuron is never parallel to the voltage dimension.

0 π/2 π

t

10

5

0

5

10

y(
t)

Solution of Eq (33)

The centre manifold is only tangential to the spiking limit cycle dynamics near the saddle. Although the
proportion of time spend near the saddle is large at some point the trajectories depart so it is only locally
valid.

The formal solution of Eq. (33) with initial condition y(0) = −∞ is

(34) y(t) =
√

b
a tan(

√
ab t− π/2).

Away from the saddle-node the slow manifold accelerates again and the variable y explodes at π/2. This
blowing up is like a spike. So for the SNLC centre manifold one can think of the the spike at y =∞ and
reset to y = −∞. The time it takes from y = −∞ to y =∞ is finite and given by

Tp = π√
ab
.

Note that for y(0) = 0 it is

(35) y(t) =
√

a
b tan(

√
ab t)

and

Tp = π
2
√
ab
.

The bifurcation parameter enter in a. If q~g(~x) = [c−1I, 0, 0, ...]T, then the firing rate has the typical
square-root scaling

f0 = 1
Tp

= π−1
√
b~l00c−1(I − I0).

Let us check this numerically in the pratical.
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8 Fundamental organisation of neuronal
excitability

The last chapter argued that conductance-based neuron models, are a consistent continuum limit of
Markov description of finite ion channels. Hallmarks of the resuliting ordinary differential equations
include first-order kinetic equations for ion channel components, i.e. gates, and certain polynomial
nonlinearities. There is a rich literature on the dynamical systems analysis of single neurons, such that it
is difficult to structure it for a lecture. Typically, the starting point is the different “simple” bifurcations
that can be found in neuron models. One can also start with the “simplest” of the complicated bifurcations
that summarises all possible simple ones. This is asking for the simplest chimera neuron with as many of
the known features as possible (Kirst 2012; Kirst et al. 2015).

Start by restating some empirical observations on the phenomenology of excitable nerve cells. For
pulsed-based communication these equations need a stable resting potential and a limit cycle-like transient
pulsatile solution for certain input perturbations (Pereira, Coullet, and Tirapegui 2015).

Phenomenon Dynamics
resting potential stable node
subtreshold oscillations stable spiral
action potential stable limit cycle
thresholds saddle, unstable limit cycle

Note that the focus on the generation of single or tonic spikes, not bursts. Bursts require at least one
additional time scale to the pulse generating ones and are not minimal in that sense.

Observation 2 (nerve cells)

i) stable resting potential, for Iin = 0 in the convex hull of reversal potentials,
ii) stable pulses

Remark 1 (dimensionality of state space)

The minimal dimensionality of the state space to get spikes (but not bursts) is n = 2.

Def. 14 (Class-1 excitability)

Class one neurons have arbirary low frequencies (long periods). This also implies they can
show very long (and in the presence of noise varied) latencies to the first spike.

Lets write the conductance-based model as follows

Def. 15 (Conductance-based neuron model)

Cmv̇ = Idc − ḡLv − Iion(v,a)

where

Iion(v,a) =
∑
kGk(v,a)(v − Ek)

and the components of the vector of gates a evolve according to

τk(v)ȧk = a
(∞)
k (v)− ak.
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For brevity, introduce x = [a1, ..., an−1, v] and denote ∀1 6 k < n : Fk = (a(∞)
k (v)− ak)/τk(v)

and Fn = (Idc − ḡLv − Iion(v,a))/Cm, such that dx/dt = F (x).

The goal is to find “the simplest” of the complicated bifurcations that allows for all known phenomena.
What is meant by the simplest? Bifurcations can be ordered according to the codimension, i.e. how many
parameters are required to tune into them. Codimension one bifurcations a points in one-dimensional
parameter spaces, hey are lines in two-dimensional spaces and sheets in three-dimensional spaces, and
so on. Which codimension should one allow for? It does not make sense to use more parameters than
are biophysically present in all the neuron models from the model class of interest. These are three for
conductance-based neuron models:

Def. 16 (fundamental parameter)

Conductance-based neuron models may have a very diverse potpourri of ion channel with
different parameters, but all share the following fundamental parameters: (Cm, Idc, ḡL). Cm
it the time-scale separation between kinetics and current balance equation. Idc and ḡL are
the constant and linear term of the total membrane current. All other “kinetic parameters”
depend on which exact channels are present in the nerve cell model and may vary substantially.

The simplest known bifurcation the can be broad into agreement with the phonomenology above is

Def. 17 (Bogdanov-Takens cusp bifurcation)

A zero eigenvalue of algebraic multiplicity two. And a degenerecy assumption to be able to
get rid of the fold via a cusp, which reads that the quadratic normal form coeficient must be
zero.

Assertion 1 (BT point)

A BT point implies the emergence of a homoclinic orbit to a saddle. Importantly, due to the
coincidence with the planar limit cycle of the Hopf bifurcation, the homoclinic orbit is planar
and not as three dimensional as a homoclinic orbit to a saddle-focus (Shilnikov). It may turn
into that further away from the unfolding.

Cusp bifurcation

Assumptions 1 (Electrophysiology)

The following assumptions can be motivated from biophysics of excitable membranes or electrophysiological
measurements:

a) All conductances are positive, ∀k : Gk > 0.
b) The kinetics of the ion channel gates is of first order, with all activation curves are

bounded, monotonic, twice-differentiable functions, that become sufficiently flat at
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v = ±∞. More specifically the derivative of the activation curve has to vanish at ±∞
and do so faster than linearly, i.e. limv→±∞ v ∂a(v)

∂v = 0.
c) Channels are voltage-gated only.
d) Class 1 → some slow positive feedback exists, i.e., ∃ṽ : dI(∞)

dv

∣∣∣
v=ṽ

> 0

Remark 2 (excitable system vs limit cycle)

Before proceeding to the actual argument, what of “excitable systems”. Many neurons do not
spike tonically but only if excited by a synaptic perturbation or noise. Or in more physiological
terms this is tonic spiking vs Poisson like spiking (low vs high CV). In such cases they cross
a “potential barrier” or some threshold manifold and return to rest after a long excursion
through state space. One way of prduceing a system with such a long excursion is to have it
have a stable limit-cycle for “other parameters”. It turns out, that the Bogdavnov-Takens
point plays a crucial role here two because it garantees there are homoclinic orbits attached
to a saddle, whcih is one way to get such excrusions.

8.1 Stable resting potential and how many fixpoint are expected

Proposition 1 (fixpoints of CBM)

From v̇ = 0 and ȧk = 0 one gets:

v∗ = Idc+
∑

k
Gk(v∗,a∗)Ek∑

k
Gk(v∗,a∗)

a∗k = a
(∞)
k (v∗).

Provided solutions to the implicite definition of the voltage fixpoint exists, then for Idc = 0
they lie within the convex hull of the reversal potentials Ek.

Given that ∀v : the fixpoints of the gates can readily be found, the steady states of the whole system are
the zeros of the steady-state steady-state I-v curve:

Def. 18 (steady-state I-v curve)

Given that all gates have time to equilibrate to their steady state values (are in kinetic steady
state), the steady-state I-v curve is defined as

I(∞)(v) = Idc − gLv − Iion(v,a∗(v)).

It is a continuous and differentiable function just like F . This allows some weal statements bout the
number of steady states expected in a conductance-based model.

Lemma 1 (fixponts of class 1 neurons)

Depending on their Idc class 1 neurons can have at least one or three steady states.

Proof 1

The partial derivative of the gating equations w.r.t v at the kinetic steady state is
∂Fk
∂v |ak=a(∞)

k

= ∂a(∞)

∂v
1

τk(v) .

Hence, the total derivative of a kinetic equation w.r.t v is in that case
dFk
dv = ∂Fk

∂v + ∂Fk
∂ak

= ∂a(∞)

∂v
1

τk(v) −
1

τk(v)
∂a
∂v = 0,

which shows that in kinetic steady state ∂a/∂v = ∂a(∞)/∂v. Therefore, the total derivative
of the steady-state I-v relation is

1
Cm

dI(∞)

dv = ∂F0
∂v + ∂F0

∂ak

∂a
(∞)
k

∂v .
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Inserting the definitions yields

dI(∞)

dv = −gL −
∑
kGk(v,a) +

∑
k
Gk(v,a)
∂v (Ek − v) +

∑
k
∂G(v,a)
∂ak

(Ek − v)∂a
(∞)
k

∂v .

This can be used to inpsect the asymptotic behaviour of I(∞) at large positive and negative
voltages:

lim
v→±∞

dI(∞)

dv = −gL −
∑
kGk(v,a∗) 6 −gL,

where the last two terms have vanished due to Assumptions 1a) and b). This means the slope
of the I-v curve is negative at v = ±∞, and thus I(∞) = 0 should cross zero at least once.
For the class 1 excitable system also Assumption 1d) stands and consequently dI(∞)

dv must
have at least one maximum. Consequently Idc can be tuned such that there is at there are at
least three fixpoints. �

Let us call the maximums ∃v̂ : d2I(∞)

dv2 |v=v̂ = 0

8.2 Rank-one updated diagonal Jacobian

Next we are making use of Axiom #c) to calculate the Jacobian of a conductance-based neuron model

Observation 3 (rank-1 updated diagonal Jacobian)

The special structure of the Jacobian in a conductance-based neuron model, a rank-1 updated
diagonal matrix,

J =


∂F1
∂a1

0 ∂F1
∂v

. . . ...
0 ∂Fn−1

∂an−1

∂Fn−1
∂v

∂Fn
∂a1

· · · ∂Fn
∂an−1

∂Fn
∂v

,

Proposition 2 (Zero-eigenvectors of a CBM)

Consider a conductance-based neuron model (Def. 15 ) at a fold bifurcation, i.e., with a
simple zero eigenvalue, λ1 = 0, at the saddle-node. Then the semi-stable (centre-)manifold is
tangential to the right-eigenvector corresponding to λ1, which is given by

(36) r1 = r1n


τk
∂F1
∂v
...

τn−1
∂Fn−1
∂v

1

 = 1
κ


...

d
dva

(∞)
k (v)|v=vsn

...
1

,

where v = vsn and ak = a
(∞)
k (vsn) was used. The normalisation constant κ is given at the

end of Proof 2 .

The associated left-eigenvector is

(37) l1 =

τk
∂Fn
∂ak...
1

,

where Fn denotes the r.h.s. of the current-balance equation and Fk for k = 1, ..., n− 1 the
r.h.s. of the kinetic equations. Note that the right eigenvector r1 gives the direction of the
semi-stable manifold.

The determinant can be rewritten as
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(38) |J | = (−1)n−1∏
k
τk

dI(∞)

dv

Proof 2

allows for an explicit calculation of the left and right eigenvectors corresponding to the
eigenvalue λ1 = 0.

Choosing the zero eigenvector as r1 =
(
µ
1
)
, one obtains from Jr1 = λ1r1 = 0 a set of n

equations:

(39) ∂Fn
∂v +

∑n−1
j=1 µj

∂Fn
∂aj

= 0, and

(40) ∂Fk
∂v + µk

∂Fk
∂ak

= 0 for k = 1, ..., n− 1.

From Eqs. (40), it follows that µj = −
(
∂Fj
∂aj

)−1
∂Fj
∂v . This solution also solves Eq. (39),

because the required zero eigenvalue implies that detJ = 0. Note that according to Leibniz’s
formula the determinant of a matrix

J =
(
A B
C D

)
is |A| |D −CA−1B|

(41) detJ =
∣∣∣∣∂F0
∂v −

∑n−1
j=1

(
∂Fj
∂aj

)−1
∂Fj
∂v

∂F0
∂aj

∣∣∣∣∏n−1
k=1

∂Fk
∂ak

= 0.

Since ∂Fk
∂ak

= − 1
τk(vsn) < 0, the first factor of the determinant must be zero. Hence, µj also

solves Eq. (39).

An analogue derivation for the left eigenvector, l0 =
(1
ξ

)
, results in the following set of

equations,

(42) ∂F0
∂v +

∑n−1
j=1 ξj

∂Fj
∂v = 0, and

(43) ∂F0
∂ak

+ ξk
∂Fk
∂ak

= 0 for k = 1, ..., n− 1,

which yields ξj = −
(
∂Fj
∂aj

)−1
∂F0
∂aj

. The normalisation constant to ensure l0 · r0 = 1 is

κ = 1 +
∑n−1
j=1 τ

2
j
∂F0
∂aj

∂Fj
∂v

∣∣
v=vsn,ak=a(∞)

k
(vsn). Note that y is in units of volt here. Other

conventions are possible.

A long calculation shows that

α2 = l1Hr1r1 = d2I(∞)

dv2 .

To the condition for the BTC bifurcation require the eigenvalue to be not simple, but of algebraic
multiplicity two. This means there is a Jordan chain of rank two, such that for the left and right
eigenvectors, l1 and r1, corresponding to λ1 = 0 there are also a pair of generalised eigenvectors
(KUZNETSOV 2011), which are not denoted as l2 and r2.

(J − λ1I)r2 = r1 and l2(J − λ1I) = l1 with l1 · r1 = l2 · r2 = 0 and l1 · r2 = l2 · r1 = 1.

Note that the orthonormalisation is somewhat unintuitive, but useful. The BT case is λ1 = 0, such that
Jr2 = r1 and l2J = l1. Numerically, this equivalent to solving an extended eigenvalue problem(
J 0
−I J

)(
r1
r2

)
= 0

Proposition 2 (Generalised zero-eigenvectors of a CBM)

Given the eigenvectors r1 and l1 and the difinition Jr2 = r1 one finds
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r2 =


τ1(r2n − r1nτ1)∂F1

∂v
...

τn−1(r2n − r1nτn−1)∂Fn−1
∂v

r2n


Proof 2

As the normal eigenvectors have already been calculated above up to normalisation, the
equations for the coefficients of the generalised eigenvectors are
n−1∑
k=1

r2k
∂Fn
∂ak

+ r2n
∂Fn
∂v = r1n

− r2jτj + r2n
∂Fj
∂v = r1nτj

∂Fj
∂v , ∀j = 1, .., n− 1

=⇒ r2j = τj(r2n − r1nτj)∂Fj∂v
n−1∑
k=1

l2k
∂Fk
∂v + l2n

∂Fn
∂v = l1n

− l2jτj + l2n
∂Fn
∂aj

= l1nτj
∂Fn
∂aj

, ∀j = 1, .., n− 1

=⇒ l2j = τj(l2n − l1nτj)∂Fn∂aj

From l1 · r1 = 0 one obtains

(44) 0 = 1 +
∑n−1
j=1 τ

2
j
∂Fn
∂aj

∂Fj
∂v

∣∣
v=vsn,ak=a(∞)

k
(vsn)

From l1 · r2 = 1 we obtain l11

Once the generalised eigensystem spanning the nullspace are determined the normal form of BT bifurcation
can be written as

After some longer calculation one obtains a condition for obtaining the generalised eigenvectors:

Conditions 1 (BTC)

and the previous conditions

(45) dI(∞)

dv = 0

(46) dI(∞)

dv2 = 0

Proof 1

The requirement of a zero determinant as defined in Eq. (38) leads to Eq. (45). Eq. (46)
follows from the degenerecy requirement of the CUSP. It was shown as a consequence of
Lemma 1 that such a point actually exists if one starts with a class 1 neuron.

From these conditions the following statement can be derived.

Lemma 2 (unique param)

From the above one can conclude that from the conditions of the BTC point a unique set of
parameter (Idc, gl, Cm) can be determined.

Proof 2

Eq. (44) can be solved for

Cm = −
∑
k
∂Iion
∂ak

τk
∂a

(∞)
k

∂v

Eq. (45) depends only on gl and Cm. It can be solved for

gl = − 1
Cm

dIion
dv
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The input current can be obtained from the fixpoint condition of the current-balance equation

Idc = glv
∗ + Iion(v∗,a(v∗)),

only if the steady state is available. Luckily condition Eq. (46) is independent of the
fundamental parameters and can be solved to find v∗.

Given the biophysical nature of the parameter both the conductance and the capacitance require positive
values to be realistic.

Lemma 3 (Permissible)

For a CBM as defined above the BTC point is biophysically permissable if
∑
k
∂Iion
∂a τk

∂a
(∞)
k

∂v < 0

Proof 3

From dI(∞)

dv = 0 =⇒ dIion
dv = −gl. Hence if gl > 0 to begin with then

sign(gl) = sign(Cm)

All SNIC neurons can be tuned into Hopf neurons (not necessariliy visa versa)

Proposition 3 (Normal form of the BTC bifurcation)

The normal form of the degenerated BTC bifucation is

ẏ = w

ẇ = α2y
2 + α1wy + β2y + β1

with α2 = l1Hr1r1 = d2I(∞)

dv2 = 0.

Proof 3

Expand the solution in small variations along the directions spanning the centre manifold:
x(t) = x0 +y(t)r1 +w(t)r2. Then, project the flowfield onto the correpsonding left eignvectors
and keep only leading order terms of the nonlinearity. The perturbation evolves according to

ẏr1 + ẇr2 = yJr1 + wJr2 + ywHr1r2 + 1
2 (y2Hr1r1 + w2Hr2r2).

Remember l1 · r1 = l2 · r2 = 0 and l1 · r2 = l2 · r1 = 1 and Jr2 = r1, l2J = l1.

Projecting onto l2
ẏ = y l2Jr1︸ ︷︷ ︸

=0

+w l2Jr2︸ ︷︷ ︸
=1

Projecting onto l1
ẇ = 1

2y
2 l1Hr1r1 + yw l1Hr1r2 + 1

2w
2Hr2r2
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9 Ultimate causation: nervous system function

Comming back to the type of questions biological theory attempts to answer, see §2.1, capters like §5
describe the mechanistic builing block present in nerve tissue, theire function and where they came from
is bracketed off. This is the discussion of proximate causes and the static form. What a bout function?

Note that function is not to be understood in a teleological sense, that it has a purpose given to it by
something. All attempts by early German “theoretical biologist” (KE von Baer, JJ Uexkülls, J Reinke or
J Schaxel) to use the nonscientific (non empirical) ideas of Hegel, Kant or Goethe as a theoretical bases
for biology have proven useless today. Their theories (vitalism, semiotic, teleology) were either incorrect
or had no utility, predictive power, empirical basis or falsifiability. They were romantic fancies of an
introspective and ultimately authoritarian, self-serving view of the living.

But “why is it like this?”-questions are nagging us. Ultimately, evolutionary considerations, e.g. the
contribution of nervous systems to fitness, may come into play. Fitness, however, is an abstract concept
difficult to relate to some specific mechanism of a complex nervous system. In part this due to the general
problem of fitness being a defined as an expectation value of future offspring.

Surely, one first needs to understand more about the function of nerve tissues, what it does. But where
to start?

Nerve tissues can roughly be categorised into

1. affarent pathways doing sensory processing,
2. central decission making computations, and
3. efferent motor pattern generators

There is no rule that nervous systems have to obay this modular design. These are to some extent
arbitrary labels given by scientists to find their way arround.

Let’s briefly go through the three clases and discuss which kind of signals are expected (not an exclusive
list).

9.1 Signals and senses

A classical, ecological theory of sensory organs aims to predict the structural organisation of the peripheral
sensory architecture (???; ???), and the coding scheme used to represent information early in the pathway
(???), based on the properties of the adequate stimuli occurring in the natural habitat. An alternative
approach is inspired by the engineering task of system identification, in which blackbox (technical) systems
are probed to obtain a response which helps uncovering the exact transformation executed by them.
In contrast to behavioural experiments that utilise abstractions of the actual stimuli perceived by the
animal (???) (Cpt. 3), systems identification often relies on unnatural stimuli that, however, possess
beneficial statistical properties to facilitate the reverse-engineering scheme. Information theory can be
applied within both paradigms as long as there is sufficient data. Examples of such artificial stimuli are a
short transient pulse, mathematically idealised by Dirac’s δ-function (Green’s function method) or „white”
unstructured noise (Wiener’s kernel method). Both signals have a flat, uniform spectrum that contains
all frequencies in an unbiased manner and thus the system’s response will not lack structures simply
because of missing input complexity. In reality, a uniform spectrum of a physical stimulus can not extend
its frequency range to infinity as this would require infinite power. Instead, there will be a reasonable
upper bound to the frequency content, fc = sup{f : P (f) > 0}. In addition, artificial stimuli are at
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times chosen from a Gaussian process, for reasons including the invocation of a central limit theorem,
arguments based on maximum entropy, or easement of analytical treatments.

9.1.1 Natural signals and their neuronal representation

One of the first observations that environmental conditions are indeed mapped into nerve pulse activity
was an experiment on the toad’s optic nerve (Edgar Adrian 1928).

The external signals from the natural world relevant to animals can often be categorised into the three
broad classes: (i) signals relevant to basic body kinematics and movement; (ii) signals for predator or
prey detection; and (iii) communication signals form other (often conspecific) animals. Here are some
examples from each category.

Example 1 (Botoxic blowfies and careful crickets)

Large monopolar cells, a first order interneuron of the insect compound eye, ecnodes light
intensities differences (contrast) I ∈ [0, Imax] into the neurons raded potential response
r ∈ [0, rmax). This was investigated in Calliphora stygia (Laughlin 1981). The cricket Acheta
domesticus represents the wind direction in 4 interneurons of the cercal system, each encoding
a different subinterval of the angular variable θ ∈ [0, 2π) into its firing rate (Theunissen and
Miller 1991).

In the above examples the input is a real valued interval ⊂ IR, while the encoding neuronal activity is
real or a discrete number, ⊂ IR or IN . For example, the cercal system maps [0, 2π) 7→ [0, fmax)4. These
are seemingly simple mappings, what could possibly go wrong?

A couple of questions arise:

(47) How exactly is this read-out by upstream parts of the nervous system? Will there be
errors?

(48) A related question is: How acute is the sense? What difference in wind direction can
still be resolved?

(49) How long does the animal have to observe a constant wind direction to be able to encode
it? How constant or stationary is the signal in the environment?

(50) What is the relation between the function and the dynamics discussed in previous
chapters?

If there is no noise and the coding variable is a real number infinite precission could be possible. If
the output is a firing rate, then upstream neurons have to estimate this based on finite amount of
observed spikes1. At the same time it needs to be understood how these spike numbers are mechanistically
generated from the neuronal dynamics.

Def 19 (spike count)

N(t) = bφ(t)c.

Note that here the statistical quantity was already connected to a dynamic phase variable φ(t) for which
the governing evolution equations are known in some regimes. Hence, one has related neuronal dynamics
and coding (???).

Some signals may not be constant in time, but at least wide-sense stationary, meaning they have temporal
correlations, but these are shift invariant.

Praying paddlefish The primary afferents in the american paddlefish Polyodon spathula’s electrosensory
organ show a tonic response to fluctuating stimuli. In their muddy habitat the electrosensory
system is used to detect their planctonic prey, like members of the crustacean genus Daphnia. The
frequency spectrum of the bioelectric profile emitted by single moving Daphnia shows that most

1Estimators should be at least consistent, hopefuly unbiased, maybe efficient.
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power resides in a baseband below 8~Hz [?, Fig. 4a]. For whole swarms the power is distributed
over a larger interval, but still drops at high frequencies. In addition to naturalistic stimuli, the
electrosensory system has been investigated with white noise analysis in order to determine the
transfer function of the sensory affarents [?]. This has confirmed that information transmission is
focused on a passband between 0.5–20~Hz with a steep roll-off. The stimulus response coherence of
affarents shows a bassband between 0.5–20~Hz with a steeper roll-off than expected from a simple
RC-circuit. In part the steep roll-off is due to noise masking from epithelial oscillators at around
23~Hz. Yet, the notch at 23~Hz is, though less strong, also apparent in the filter gain, cf Fig.3(b) in
Ref.~[?].

Hiving hoverflies The Dipteran haltere organ [?] is a biological gyroscope that enables hoverflies to
excel in aeronautics. The organ evolved from the second pair of wings. According to behavioural
studies halteres measure Coriolis forces during flight. The white noise analysis of crane fly halteres
under direct mechanical stimulation in Ref.~[?, Fig. 3] shows that the system is sensitive to stimuli
movements on time scales around 10~ms, while very fast stimulus changes are ignored.

Greeting grasshoppers Many gomphocerin grasshoppers like Chorthippus biguttulus use acoustic sig-
nalling to arrange mating behaviour. The detected signals are amplitude modulations of broad
band carrier waves. The important information about the song structure resides in frequency band
below 100~Hz, see Refs.~[?, Fig. 1b,c] and [?, Fig.1b].

If the signals in the environment are time dependent functions x(t) from some function space, then the
neuronal signals representing them could also be functions of time, y(t).

Again some questions:

(51) But how many degrees of freedom should the function have to represent the signal?

At the dispose are the pulse trains emmited by a neuron. An event time series

Def. 20 (Spike train and empirical measure)

The event time series of action potential {tsp
k }∞k=1 can be defined in terms of the dynamics, as

the kth spike obaying

φ(tsp
k ) = k.

Further, a spike-train can be written as the empirical measure

(52) y(t) =
∑∞
k=1 δ(t− t

sp
k ) =

∑∞
k=1 δ(φ(t)− k).

Def. 21 (I/O-equivalent phase oscillator)

An I/O-equivalent phase oscillator produces with its threshold crossing process the same spike
times {tsp

k }k as a particular conductance-based model (Lazar 2010).

Def. 22 (Instantaneous firing rate)

This idealised quantity does not exist in finite neuronal systems. It is the ensemble average

r(t) = 〈y(t)〉y|x = J(φ, t)|φ|1=0,

and can be interpreted as a infinitely large population of the statistically i.i.d. neurons
experiencing the same stimulus or one neuron being stimulated time and again. The probability
flux is defined as

J(φ, t) = a(φ, t)p(φ, t)− 1
2σ(φ) ∂

∂φσ(φ)p(φ, t). The “advection”, a, is due to active transport.

A simplifying observations is that there often (but not always) is a separation of time scales between
stimulus induced perturbations and those fluctuations that originate from internal biophysical noise in
receptor neurons, see §5. The three examples clearly fall into this category where the stimulation cutoff
renders the stimuli orders of magnitude slower than the intrinsic noise. Therefore, the fast (white) noise,
ξ(t), in the phase equation can be averaged

φ̇ = f + Z(φ)x(t) + σ̄ ξ(t) with σ̄2 =
∫ 1

0 σ
2(φ) dφ.

43



Continuity equation

∂p
∂t = −∂J∂φ

TEST DIV

9.1.2 Bandlimited signal

A time-continuous signal does not necessary imply an infinite degree of freedom. Deterministic signals
like sinusoidal is specified by only two degrees of freedom. In contrast to white noise, a band limited
signal, with no power above fc, has only a limited number of 2fc degrees of freedom per second (???).
In accordance with Whittacker-Shannon sampling it can be represented as a countable set of random
numbers (finite degrees of freedom per unit time). Mutual information estimations can then be based on
these instead of the continuous signal without loosing information. The physical signals that announce
themselves on sensory organs can have their power distributed over many octaves. However, signals
emitted by other animals, either voluntarily like the communication songs of grasshoppers or involuntary
as moth falling prey to a bat, are often constrained to a frequency range that is related to the body size
of the sound producing animal (see the next paragraph for three examples of relevant natural stimuli). In
such occasions one can identify an upper frequency, fc, above which no relevant information is expected.
Additionally, all primary transduction processes have a time constant restricting the signal frequencies
they can follow. This is sufficient reason to consider the stimulus x(t) to fall into the class of bandlimited
signals (also called baseband signals).

More precisely according to the sampling theorem a band limit signal with cutoff frequency fc requires at
least a sampling rate of 2fc. With the help of the Whittaker-Shannon interpolation formula the signal
can be written as (???)

(53) x(t) =
∑∞
n=−∞ xn sinc

(
2tfc − n

)
For an observation interval [0, T ) one needs a minimum of NT = d2Tfce samples to specify the continuous
bandlimited process completely.

The coefficients xn can be continous Gaussian random variables such that one has a bandlimited Gaussian
random processs. In order to compare information theoretic bounds on the information transmitted
through continuous channels (physical systems) to histogram based methods for the estimation of mutual
information the Whittaker-Shannon sampling can be augmented by discretisation of the (Gaussian)
random variables xn. The simplest strategy is to start with a discrete set of binomially distributed
random variables, xn ∼ Binom(k, p) with p = 1

2 , and use the fact that for large k the statistics will be
approximately Gaussian. With this there is a correspondence between a time-continuous process on an
interval [0, T ) and a discrete binomial vector, so that the histogram frequency p([x1

1, . . . , x
k
1 , . . . , x

1
n, . . . , x

k
n])

can be estimated. For example the blue time continuous process in Fig. 9.1 between 50 and 100ms with
fc = 100Hz is described by the 11 samples marked as green circles. The continuous process is statistically
similar to a Gaussian process.

A bandlimited and binomially distributed (k = 14, pb = 1
2 ) signal as an approximation to a Gaussian

process (µ = kpbn, σ2 = kpbn(1 − pbn)). The cutoff frequency was 100~Hz, implying that the entire
stimulus over 250~ms is exactly defined by 50 regularly spaced samples, as according to the Nyquist
theorem one needs at least two samples per period to define an oscillation. To check if the binomial
amplitude distribution is an adequate approximation to a Gaussian, the Shapiro-Wilk test for normality
is used. The Samples are accepted as Gaussian with an α-level of 0.4 (very small α-leves would mean
rejection of normality).
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Figure 9.1: A bandlimited and binomially distributed (k = 14, pb = 1
2 ) signal as an approximation to a

Gaussian process (µ = kpbn, σ2 = kpbn(1− pbn)). The cutoff frequency was 100~Hz, implying
that the entire stimulus over 250~ms is exactly defined by 50 regularly spaced samples, as
according to the Nyquist theorem one needs at least two samples per period to define an
oscillation. To check if the binomial amplitude distribution is an adequate approximation to a
Gaussian, the Shapiro-Wilk test for normality is used. The Samples are accepted as Gaussian
with an α-level of 0.4 (very small α-leves would mean rejection of normality).

9.2 Decission making, multimodality, and universal codes

9.3 Motor system

9.4 Stimulus representation in single neurons

In previous lectures the biophysical details of the action potential voltage dynamics in membrane patches
were discussed, highlighting its key features: (i) the nonlinear feedback, provided by voltage gated
channels; and (ii) the inherent stochasticity. These two combined make for a complex system that shirks
being amenable to a complete analytical treatment. How can one answer the question „Which frequencies
in a stimulus is it sensitive to?”.

A particular useful strategy has been to derive approximate filters2 from model equations that are easier
to analyse (???). These models must omit many biophysical details to remain analytically tractable.

The calculation of response filters for neuronal models is a long standing exercise in theoretical biology
(???).

9.4.1 Spike-triggered ensemble

A classic approach to investigate which stimulus characteristics are represented in the activity of sensory
neurons is to estimate their receptive field or spike-triggered average [?]. The analysis characterises the
components of a complex stimulus that are relevant to elicit a spike response or increased firing rate.
Hence, the concept is related to that of a visual receptive field and could ultimately cause behavioural
reactions. It is, therefore, related to the antedating concept of sign stimuli in ethology (???; ???). The
method has been applied to recordings from the visual (???) and auditory (???) system.

One can also turn the paradigm around by applying a simple stimulus such as a delta pulse and
characterising the nature of the response, which is then called transfer functions or point spread function
in the visual system. The term transfer function stems form signal processing and stresses the fact

2The biological literature often uses dynamical systems jargon to describe mechanistic explanation and resorts to engineering
vocabulary in order to describe the function of nerve cells.
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that the neuron is viewed as a linear filter. It is surprising how complete a description of an inharently
nonlinear neuron, a linear response filter can give, despite the fact that neurons contain so many nonlinear
elements. In a sense it parallels the success of linear response theory in complex physical problems (???).
Of course, there is no one linear filter that describes the whole range of dynamical features of the neuron.
But different aspects may be characterised by different filter. In particular, we will linearise around
the suprathreshold periodic solution to derive a firing rate filter in ??. Linearising the voltage response
around the resting potential yields quite a different filter that describes the subthreshold response. So
essentially it depends on which output variable one analyses.

There are two different filter

1. the encoding filter mapps input to output;
2. the decoding filter reconstructs the input from the output.

This is related to the question “what causes a neuron to spike” or how does observing the neuronal spike
response affect the conditional statistics of the stimulus p(x|y)? After observing the spike train some
external stimuli should have been more likely their cause than others. An immediate idea is to look at the
first moments of the conditional ensemble. For example, the mean stimulus before a spike in one trial is

STA(τ) = 1
Nsp

∑Nsp
k=1 x(tk − τ) = 1

Nsp

∫∞
−∞ dt y(t)x(t− τ),

where we used the platonic spike train from Def. 20 .

To improve the signal to noise ratio, an experimenter might repeat the same stimulus, so that a trial
average might smooth out the effect of intrinsic noise. Then, if the number of spikes, Nsp, per trial is
large and almost constant (modest Fano factor) it may be approximated by〈

1
Nsp

∫
dt y(t)x(t− τ)

〉
y|x
≈ 1
〈Nsp〉

∫
dt r(t)x(t− τ) = 1

r0
Rrx(−τ),

where r0 is the mean firing rate. This gives rise to the term reverse-correlation method, see Ref.~[?,
Cpt. 1.3] and Ref.~[?].

Given that the rate causally depends on previous stimulus it can be expanded as a Volterra series in
orders of the stimulus magnitude

r(t) = r0 +
∫∞

0 h(t− s)x(s)ds+ ...

This implies that also p(φ, t) = p0(φ) + p1(φ, t) + ... and J(φ, t) = J0 + J1(φ, t) + ..., as well as the
Fokker-Planck operator

ṗ = (L0 + L1)p, where L0(φ) = (σ2

2
∂2

∂φ2 − f ∂
∂φ ), and L1(φ, t) = −x(t) ∂

∂φ .

The right eigen system of the Fokker-Planck operator, L0qk(φ) = µkqk(φ) has the fourier basis as solution

qk(φ) = ei2πkφ with eigenvalues µk = − 1
2 (2πkσ)2 − ik2πf .

∀k 6= 0 the eigenvalues have negative real part and the contribution of the corresponding eigenfunction
vanishes for t→∞, only the eigen mode k = 0, i.e., q0 = 1 survives.

Hence, the zeroth order equation (x = 0), ṗ0 = L0p0 has a stationary solution p0 = q0 = 1. Consequently
the zeroth order flux is constant, too. Hence, J(1, t) = f .

The first order equation is

ṗ1 = L0p1 + L1p0 = σ2

2
∂2

∂φ2 p1 − f ∂
∂φp1 − Z ′(φ)x(t).

The simplest time dependent soution can be obtained by Laplace transforming and Fourier series expanding
this equation, p(φ, t)→ P (φ, s).
σ2

2
∂2

∂φ2P − f ∂
∂φP − sP = Z ′(φ)X(s)

With Z(φ) =
∑∞
k=−∞ cke

i2πkφ and in the orthogonal Fourier basis

P1(k, t) = − i2πkckX(s)
s+i2πkf+ 1

2 (kσ)2
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or

P (φ, s) = −
∑∞
k=−∞

i2πkckX(s)ei2πkφ
s−µk

From the definition of the flux J(φ, t) = (f + Z(φ)x(t))p− σ2

2
∂
∂φp, the first order equation for the flux is

J1(k, s) =
(
f − σ2

2
∂
∂φ

)
P1(k, s) + ckX(s)

J1(k, s) = ( µk
s−µk + 1)ckX(s) = ( s

s−µk )ckX(s)

R1 = J(φ = 0, s) = H(s)X(s)

with H(s) =
∑∞
k=−∞

cks
s−µk

for t > 0 h(t) =
∑
k ck(µkeµkt + δ(t))

9.5 Properties of the firing rate’s linear response filter

The low frequency limit of the transfer function H is

limf→0H(i2πf) = c0 =
∫ 1

0 Z(φ)dφ = 〈Z(φ)〉.

Consequently, PRCs with a mean can transfer arbitrariliy low frequencies.
∂f0
∂I = − 1

P 2
0

∂P0
∂I = 1

P0
〈Z(φ)〉.

The latter identity was already established in Eq. (17).

Proposition 1 (DC limit of transfer function)

In the mean driven regime, the susceptibility of the instantaneous firing rate to very low
frequencies is related to the mean component of the PRC and the derivative of the f0-I curve

limf→0H(i2πf) = 〈Z(φ)〉 = 1
f0

∂f0
∂I = ∂ ln f0

∂I .

Remark 3

As all known neuron models have ∂f0/∂I > 0 above their rheobase, PRC are garantued to have
a – at least small – mean component and the transfer function is susceptible to low frequencies.
There are however quantitative differences between the different onset bifurcations.

Using ck = ak + ibk one obtains Z(φ) = a0 +
∑∞
k ak cos(2πkφ) + bk sin(2πkφ). With this

limf→∞H(i2πf) =
∑
k ak = Z(0)

Left: Poles-zeros plot of the transfer function. Right: transfer spectrum.
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10 Information theory for the living

Back to function. But where to start?

During the disucussion of action potential stability “pulse-based communication” using spike events was
mentioned as a motivation in §3. In very general terms, nervous system communication information for
the senses to some place where decissions are made and further to places where motor commands are
produced and executed, a reflex would be the simplest form (Braitenbergian view [@]). In the literature
one finds a theory of communication called information theory (Shannon 1948).

10.1 Disclaimer

The author of this script is uncertain about the utility of information theory in biology at large (this is
always a good reason to give a lecture on it), lit looks exciting but has some short commings: This theory
was originally never intended to be used to describe living systems in which information bares meaning
and consequences, i.e., the content of a message actually matters for your survival. Information theory
deals with optimal compression, lossless transmission of signals irrespective of weather it is relevant or a
youtube video. Nontheless a look at a quantitative science of communication may be insightfull.

Information theory has long been in the discussion as an ecological theory upon which to judge the
performance of sensory processing (Atick 1992). This led Joseph Atick, Horace Barlow and others to
postulate to use this theory to study how nervous systems adapt to the environment. The goal is to make
quantitative predictions about what the connectivity in the nervous system and the structure of receptive
fields should look like, for instance. In this sense, information theory was hoped to become the basis for
an ecological theory of adaptation to environmental statistics (Atick 1992,Barlow (1961)).

It may not seems obvious how the mechanistic theories of dynamical system and the functional theory
of inromation should be brought to gehterh, but that is of course the gould. One would like to decide
which dynamical features have what kind of function, this will be addressed after the intruduction to
information theory (G. B. Ermentrout, Galán, and Urban 2007; Schleimer and Stemmler 2009).

10.2 The communication process

The science of communication is concerned with at least two subtopics: (i) the efficient representation of
data (compression); and (ii) the safe transmission of data through unreliable channels (coding).

A source (the message) typically runns through the following processing sequence:

→ Compress → Encode
↓

Channel
↓

← Decompress ← Decode

One of the formal assertions of information theory is that these two problems can be addressed separately
(without loss of generality or efficiency): Meaning first one compresses by removing redundancies. Then
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one again adds failsafe redundancy to combat the unreliability.

However convenient for engineering, this does not mean that biological systems have to make use of this
fact (source coding and channel coding could be very intertwined).

Also note that many of the mathematical results in information theory are bounds, inequalities not
achievable in real systems.

(An ergodic system has an invariant phase volume, which is a necessary condition for an organism to
exist, in the sense that it would otherwise transgress phase boundaries and cese to exist)

10.3 Channel coding

One may start by wrongly assuming that the function of nerves is to communication information,
irrespective of its semanting meaning. In reality, it is more likely that the function is to filter information,
i.e., reliably communication the import parts and filter out the irrelevant information (or noise). But to
introduce the classical quanities, dispense with the semantics.

If the function of nervous system (in part) is to communicate information, then the repertoire and speed
of biological computations are limited by thermodynamic or metabolic constraints (???-). The second will
deferred to later chapters, but as an outlook. There is no free lunch. It follows from basic thermodynamics
that to obtain information work needs to be performed.

Here we consider a „memoryless” channel:

message
W

encode→ X 3 x→
noisy channel
p(y|x) → y ∈ Y decode→

est. Message
Ŵ

The rate R with which information can be transmitted over a channel without loss is measured Bits
transmission

for a discrete time channel or Bits
second for a continuous time channel. Operationally, we wish all bits that

are transmitted to be recovered with negligible probability of error.

A measure of information could be:

The average reduction in the number of binary-questions needed to identify x ∈ X before and
after observing y ∈ Y .

This would just be the difference in entropies:

I(X;Y ) = H(X)−H(X|Y ) = −
∑
x∈X

p(x) log2 p(x) +
∑
x∈X
y∈Y

p(x, y) log2 p(x|y).

This goes by the name of mutual information or transinformation. Remember marginalisation

p(x) =
∑
y∈Y p(x, y).

So the mutual information is

I = −
∑

x∈X
y∈Y

p(x, y) log2 p(x) +
∑

x∈X
y∈Y

p(x, y) log2

(
p(x|y)p(y)

p(y)

)
or

I(X;Y ) =
∑

x∈X
y∈Y

p(x, y) log p(x,y)
p(x)p(y)

From the complete symmetry of this quantity we can also write it as

I(X;Y ) = H(Y )−H(Y |X).

The following Figure illustrates how the mutual information is related to respective (conditional) entropies
of the input and output ensemble.
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We have heard that I(X;Y ) quantifies the statistical dependence of X and Y , but how is that related to
error-free communication? What makes the error is the channel. I(X;Y ), however, also depends on the
input ensemble p(x). To focus on the properties of the channel one can simply take an „optimal” input
ensemble and define the channel capacity

C = maxp(x) I(X;Y ).

It will be left to the sender to actually find the optimal input statistics. Note that I(X;Y ) is a concave
function (∩) of p(x) over a convex set of probabilities {p(xi)} (this is relevant for procedures like the
Arimoto-Blahut algorithm for estimating C) and hence a local maximum is a global maximum.

p = []
while

p(

Shannon’s channel coding theorem established that this capacity indeed measures the maximum amount
of error-free information that can be transmitted.

10.4 Maximum entropy, discrete finite alphabet

A trivial upper bound on the channel capacity is

C 6 min{log |X|, log |Y |}.

This is due to the maximum entropy property of the uniform distribution in the discrete case:

Example (Maximum entropy, discrete case): For the derivate of the entropy from Eq. ((???)) one gets:
∂
∂pi

H = − log2 pi − 1, which leads to pi ∝ e−1 ∀i. After normalisation one has pi = 1/N , so the
uniform distribution maximises the entropy in the discrete case.

10.5 Information transmission (continuous case)

Some of the signals in nature (and those applied in the laboratory) have continuous alphabets, e.g., light
intensity values. Does it make sense to extend the definition of the entropy as

(54) H(x) = −
∫

dx p(x) ln p(x)?

Maybe. Let us see how far one gets with this definition. It is called differential entropy by the way.
Through quantisation this can be related back to the entropy of discrete alphabets.

If the p(x) is smooth then one associates the probability of being in i∆ 6 x 6 (i+ 1)∆ with

pi = p(xi)∆ =
∫ (i+1)∆
i∆ dx p(x)

The entropy of the quantised version is

H∆ = −
∞∑

i=−∞
pi ln pi = −

∞∑
i=−∞

∆p(xi) ln(p(xi)∆)
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= −
∞∑

i=−∞
∆p(xi) ln p(xi)− ln ∆

This is problematic as the second term goes to infinity for small quantisations. Formally, if p(x) is Rieman
integrable, then

lim∆→0 = H∆ + ln ∆ = −
∫

dx p(x) ln p(x)

Since the infinitesimal limit is taken we can also take n to be the number of quantal intervals so that in
the limit

lim ∆→0
n→∞

ln ∆ ≈ n.

So that an n-bit quantisation of a continous random variable x has entropy

H(x) + n.

With the mutual information being the difference of entropies the quantisation term vanishes.

10.6 Optimal coding

A first example can be taken from rate coding1. In terms of our spike trains from Eq. (52), the
instantaneous firing rate can be defined as

Example (Optimal coding in flies (Laughlin 1981)): In short, Simon measured the distribution of light
intensities that would impinge on the fly’s compund eye in a natural environment: It was more or
less normally distributed. He asked What is the optimal contrast-response function? He postulated
that an efficient allocation of resources (of the possible responses) would be, to spread more likely
inputs over a broader range of firing rates. Why? It makes them easier to differentiate by upstream
neurons. Via experiments he found that the fly’s compound eye approximates the cumulative
probability distribution of ctrast lelvels in natural scenes.
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1Here, the alphabet is a firing rate f0 ∈ IR. It might be more reasonable to think about spike counts in a given time
window, which is still a countable set.
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Def. 23 (Gaussian nonlinear channel)

The channel is defined by the following mapping:

y = f(x) + z

where z ∼ N (0, σ2) is zero mean normally distributed .

Which encoding function (e.g., the constrast-response function from above) maximises the mutual
information across the channel given that we know the input statistics?

Assumptions:

1) f is a continuous monotonous function with a somewhat restricted band width f(xmax)−f(xmin) = a.
2) For convenience the noise is really small, i.e., σ → 0 pz(z) = δ(z).

The mutual information is

I =
∫
p(y|x)p(x) ln p(y|x)

p(y) dxdy

= H(y)−H(y|x)

H[y|x] = H(z) = 1
2 ln(2πeσ2) = 1

2 (1 + ln(2πσ2))

The noise entropy does not depend on x nor on f(x) in this particular channel.

To calculate the entropy of the output random variable y not that it is added from two numbers, y = f +z.
This means

py(y) =
∫
pz(y − w)pf (w)dw = pf (y).

The last identity used Assumption 1). From the transformation rules of random variables one has
p(f) dfdx = p(x) or p(f) = p(x)

f ′(x) .

Hence,

H(y) = −
∫
dy p(y) ln p(y) = −

∫
dy p(x)

f ′(x) ln p(x)
f ′(x) = −

∫
dx p(x) ln p(x) +

∫
dx p(x) ln f ′(x)

From assumption 2) we have

J [f ′(x)] =
∫ xmax
xmin

f ′(x)dx = f(xmax)− f(xmin)

C[f ′(x)] = H[f ′(x)]− λ(J [f ′(x)]− a)
δC[f ′(x)]
δf ′(x) = p(x)

f ′(x) − λ = 0

Maximum Mutual information given p(x) is

f ′(x) = λp(x) or f(x) = λP (x) = λΦ(x).

This means that under the assumptions above, the contrast-response function should be proportional to
the cummulative density function of the input.

10.7 Maximum entropy, continuous alphabet

Let us pause and ask: What is the maximum entropy distribution for a continuous alphabet?

Example (Maxent, continuous with variance constraint): Take a random variable x ∈ IR. It can not
be the uniform distribution as in the discrete case. In fact we need additional constraints. For
example one may ask for the maximum entropy distribution, p(x), given a fixed mean, µ, and
variance σ. Using Lagrange’s multipliers to formulate the constraint optimisation problem

C = H + λ0
∫

dx p(x) + λ1
(∫

dx p(x)x− µ
)

+ λ2
(∫

dx p(x)(x− µ)2 − σ2)
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One searches for p(x) that fulfils δC/δp(x) = 0 and ∂C/∂λi = 0, where δ/δp(x) is the
variantional derivative. One finds

p(x) = exp(λ0 − 1 + λ1x+ λ2(x− µ)2).

With the normalisation from ∂C/∂λi = 0 we get the normal distribution (eλ0−1 = 1/
√

2πσ2,
λ1 = 0 and λ2 = 1/σ2).

10.8 Bounds on the estimation error

What did we learn? Well

(55) H(x) 6 HGauss(x).

If we consider the whole spike train y(t) =
∑
k δ(t− t

sp
k ) (see Eq. (52)) as the ouput, not just its mean

input intensity and mean firing rate, we have a continuous time dependent stochastic processes to deal
with. Note that the definition of the spike train, if integrated, is related to the empirical distribution
function.

If we average infinitely many trials we get the instantaneous firing rate r(t) = 〈y(t)〉y|x. We will give a
mathematical definition of r(t) later. Our communication channel looks like that

input signal neural response
x(t) ∈ IR → pathway → y(t) ∈ IR

The entropy rate of an ergodic process can be defined as the the entropy of the process at a given time
conditioned on its past realisations in the limit of large time

(56) H[x] = limt→∞H[xt|xτ : τ < t].

The mutual information rate measures the amount of information a neural pathway transmits about an
input signal x(t) is the mutual information rate,

(57) I[x, y] = H[y]− H[y|x]︸ ︷︷ ︸
encoding

= H[x]− H[x|y]︸ ︷︷ ︸
decoding

,

between the stochastic process, x(t), and the stochastic response process, y(t). The entropy rate H
measures the number of discriminable input or output states, either by themselves, or conditioned on
other variables.

The mutual information rates, which is the difference between unconditional and conditional entropy
rates, characterises the number of input states that can be distinguished upon observing the output. The
response entropy rates H[y], for instance, quantifies the number of typical responses per unit time, while
H[x|y] is a measure of the decoding noise in the model. If this noise is zero, then the mutual information
rate is simply H[x], provided that this is finite.

The conditional entropy rates H[y|x] and H[x|y], characterising the noise in the encoding and decoding
model respectively, are each greater than zero. In information theory, these quantities are also called
equivocation. Hence, both the stimulus and response entropy rates, H[x] and H[y], are upper bounds for
the transmitted information.

Example (Info rate continuous discrete-time Gaussian process): The OU-process from Eq. (27) is an
example of a Gaussian process. Take a discretised version, ~x = [x(t1), x(t2), ...], of it such that

p(~x) = |2πK|−1/2 exp
(
− 1

2 (~x− ~µ)†K−1(~x− ~µ)
)

Hn = 1
2 ln 2π|K|+ n

2
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This is similar to the quantisation problem. It might be reasonable to drop the n term
(sometimes this is done, sometimes not). For the one dimensional case we have

H = 1
2 (1 + ln 2πσ2)

or, if we drop the n = 1

(58) σ2 = 1
2π e

2HGauss(x)

Any practical consequences?

Def. (Estimation error): For a random variable x the estimation error of an estmator x̂ is

〈(x− x̂)2〉

The best estimator is the mean, so the statisticians say. Therefore a lower bound to the estimation error
is given by

(59) 〈(x− x̂)2〉 > 〈(x− 〈x〉)2〉 = σ2 = 1
2π e

2HGauss(x) > 1
2π e

2H(x).

The lasst inequality followed from Eq. (55).

Example (Info rate continuous continuous-time Gaussian process): Up to an additive constant the
entropy of a multivariate Gaussian was23

H = 1
2 ln |K| = 1

2 tr lnK = 1
2 tr ln Λ = 1

2
∑
k lnλk.

First let us observe the process for ever ~x = [x(−∞), ..., x(∞)], a bi-infinte series with countable
elements. The elements of the covariance matrix Kij = c(i ∗ dt − j ∗ dt). The orthogonal
eigen-function for the continous covariance operator on t ∈ IR are the Fourier bases. It can be
shown that in the continuum limit

H =
∫
df lnλ(f)

The result is due to Kolmogorov see also (???,Golshani and Pasha (2010)).

10.9 Linear stimulus reconstruction and a lower bound on the
information rate (decoding view)

Without a complete probablilistic description of the model the mutual information can not be calculated.
And even with a model the involved integrals may not be tracktable. At least two strategies to estimate
it exist, though: Either, create a statistical ensemble of inputs and outputs by stimulation, followed by
(histogram based) estimation techniques for the mutual information; or, find bounds on the information
that can be evaluated more easily. In general, the estimation of mutual information from empirical
data is difficult, as the sample size should be much larger than the size of the alphabet. Indeed, each
element of the alphabet should be sampled multiple times so that the underlying statistical distribution
can, in principle, be accurately estimated. But this prerequisite is often violated, so some techniques
of estimating the information from data directly rely on extrapolation (???). The problem becomes
particularly hairy when the alphabet is continuous or a temporal processes had to be discretised, resulting
in large alphabets.

Another approach, which will allow us to perform a theoretical analysis of phase dynamics, relies on a
comparison of the neuronal “channel” to the continuous Gaussian channel (???,Cpt.~13) is analytically
solvable (Cover and Thomas 2012). The approach can be used to estimate the information transmission
of neuronal models (???). Also experimental system have ben analysed in this way, e.g.:

1. the spider’s stretch receptor (???);
2Remember the determinant is |K| =

∏n

i=1 λi. So ln |K| =
∑n

i=1 lnλi. In terms of the matrix-logarithm and the trace
the determinant can be expressed as |K| = exp tr lnK.

3Because the trace is invariant under similarity transforms trK =
∑n

i=1 λi.
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2. the electric sense of weakly electric fish (???) and paddle fish (???);
3. the posterior canal afferents in the turtle (???).

It was prooven that in that this method leads to a guaranteed lower bound of the actual information
transmitted (???).

If one has experimental control of the stimulus ensemble it can choosen to be a Gaussian process with a flat
spectrum up to a cutoff as to not introduce biases for certain frequency bands. The mutual information
between stimulus x(t) and response y(t) can be bound from below as

(60) I[x, y] = H[x]−H[x|y] > H[x]−Hgauss[x|y],

Here, Hgauss[x|y] is the equivocation of a process with the same mean and covariance structure as the
original decoding noise, but with Gaussian statistics. The conditional entropy of the stimulus given
the response is also called reconstruction noise entropy. It reflects the uncertainty remaining about the
stimulus when particular responses have been observed.

It turns out that the inequality in Eq. (59) also holds if the estimator is conditioned. Say from the output
of the neuron we estimate its input

x̂(t) = x̂t[y].

So if the process has a stationary variance

〈(x(t)− x̂(t))2〉x|y > inf
x̂
〈(x(t)− x̂(t))2〉x|y = 〈(x(t)− 〈x(t)〉x|y)2〉x|y = e2Hgauss[x|y].

The second line uses the fact that in this case the optimal estimator is given by the conditional mean.
We have the following bound on the equivocation

(61) H[x|y] 6 Hgauss[x|y] 6 1
2 ln〈(x(t)− x̂(t))2〉 6 ln〈n2(t)〉,

The deviation between stimulus and its estimate, n(t) = x(t)− x̂(t), is treated as the noise process.

In order to obtain a tight bound the estimator x̂(t) should be as close to optimal as possible. For the
case of additional information given by the response of the neural system y(t) to the process x(t), the
estimator should make use of it, x̂t[y]. For simplicity one can assume it is carried out by a filtering
operation, x̂(t) = (f ∗ y)(t) specified later (Gabbiani and Koch 1998). Like the whole system the noise
process is stationary, and its power spectral density, Pnn(ω), is

Hgauss[x|y] 6 1
2 ln〈n2(t)〉 = 1

2
∫∞
−∞

dω
2π lnPnn(ω).

Together

(62) I[x, y] > 1
2
∫∞
−∞

dω
2π ln

(
Pxx(ω)
Pnn(ω)

)
So as to render the inequality in Eq. (61) as tight a bound as possible one should use the optimal
reconstruction filter from y to x̂. In other words, it is necessary to extract as much information about x
from the spike train y as possible.

The next step should be to find an expression for the noise spectrum, Pnn(ω), based on the idea of ideal
reconstruction of the stimulus. As opposed to the forward filter, the reconstruction filter depends on the
stimulus statistics (even without effects such as adaptation). We seek the filter h that minimises the
variance of the mean square error

(63) 〈n2(t)〉 = 〈(x(t)− x̂(t))2〉, with x̂(t) =
∫

dτ h(τ)y(t− τ).

Taking the variational derivative [?] of the error w.r.t.
the filter (coefficients) h(τ) and equating this to zero one obtains the orthogonality condition for the
optimal Wiener filter (???)

(64) 〈n(t)y(t− τ)〉 = 0, ∀τ .

Inserting the definition of the error, n(t) = x(t)− x̂(t), into Eq. (64) yields

〈x(t)y(t− τ)〉 −
∫

dτ1 h(l)〈r(t− τ1)r(t− τ)〉 = Rxy(τ)− (h ∗Ryy)(τ) = 0
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In order to obtain h we need to deconvolve the equation, which amounts to a division in the Fourier
domain

(65) Pxy(ω) = H(ω)Pyy(ω) =⇒ Hopt(ω) = Pxy(ω)
Pyy(ω) .

To compute the mutual information rate, we now calculate the full auto-correlation of the noise when the
filter is given by Eq. (65). For an arbitrary filter h(t), we have

Rnn(τ) = 〈n(t)n(t+ τ)〉 = 〈n(t)x(t+ τ)〉 −
∫

dτ1 h(τ1)〈n(t)y(t+ τ − τ1)〉.

When the orthogonality condition of Eq. (64) holds, the right-most term vanishes. Proceeding by
expanding the first term algebraically leads to an expression for the noise correlations

Rnn(τ) = 〈n(t)x(t+ τ)〉 = Rxx(τ)−
∫

dτ1 h(τ1)Rxy(τ − τ1).

This expression can be Fourier transformed in order to obtain the required noise spectrum

Pnn(ω) = Pxx(ω)−H(ω)Pxy(ω) = Pxx(ω)− |Pxy(ω)|2
Pyy(ω) ,

where the definition of the optimal filter, Eq. (65), was utilised. This result can then be
inserted into Eq. (62) to obtain the following well known bound on the information rate
(???,lindner2005j:mi,holden1976b,stein1972j:coherenceInfo)

(66) M[x, y] > − 1
2
∫ ωc
−ωc

dω
2π ln

(
1− |Pxy(ω)|2

Pxx(ω)Pyy(ω)

)
.

This information bound involves only spectra and cross-spectra of the communication channel’s input
and output processes which are experimentally measurable in macroscopic recordings [?, ?, ?, ?]. The
channel, in this case the neuron, can remain a black box. But since we can bridge the divide between
microscopic, biophysical models and their filtering properties, we will, in the following section, derive the
mutual information rates.

Def. (spectral coherence): The expression in Eq. (66) is termed the squared signal response coherence

(67) c2(ω) = |Pxy(ω)|2
Pxx(ω)Pyy(ω) .

It quantifies the linearity of the relation between x and y in a way that it equals 1 if there is no
noise and a linear filter transforms input to output. Both nonlinearities and noise reduce the
coherence. The coherence can be estimated from data using the FFT algorithm and spectrum
estimation. It is implemented in the free software packages scipy and matplotlib.

What renders the coherence a useful quanity? While the cross-spectrum informs us when stimulus and
output have correlated power in a spectral band, the normlisation with the output auto-spectrum can be
crucial. Say we find a particular high power in Pxy(ω), this may not be ralted to the stimulus but could
just be the intrinsic frequency of the neuron itself.

The coherence is a quantity without mention of the explicite decoding filter, in fact it is symmetric
in input and output just as the mutual information. This is beneficial because one can now take the
encoding view in the next chapter.
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11 Linear response filter

The stimulus spectral density is given by the environment or controlled by the experimental setup, while
cross- and output spectra need to be measured or calculated from the model in question. In this lecture
cross-spectral and spike train spectral densities are derived from phase oscillator, see Eq. ((???)), that
are in turn derived from biophysical models. This means we do not treat the channel as a blackbox but
assume a particular model.

The first quantity we need to calculate Eq. (67) is the cross-spactrum. On the one hand it is the Fourier
of the cross-corrlation, on the other it can be written as averages of the Fourier transforms (FT and
average are linear operation).

(68) Pyx(ω) = 〈〈ỹ(ω)x̃∗(ω)〉y|x〉x = 〈〈ỹ(ω)〉y|xx̃∗(ω)〉x.

What has happened here? The cross-spectrum can be obtained by averaging the Fourier transformed
quantities over trials and the stimulus ensemble. The average can be split into the conditinal average over
trials 〈·〉y|x, given a fixed, frozen stimulus and the average over the stimulus ensemble, (〈·〉x). The former
is essential an average over the encoding noise (Chacron, Lindner, and Longtin 2004,Lindner, Chacron,
and Longtin (2005)).
Observe that 〈ỹ(ω)〉y|x is Fourier transform of the trial averaged firing rate conditional on a frozen
stimulus

r(t) = 〈y(t)〉y|x.

Thus, it is sufficient to derive a filter that maps input x(t) to a firing rate, not an individual spike train.

Def. (forward, encoding filter): Let g(t) be the filter kernel that maps stimulus into instantaneous firing
rate

(69) r(t) = (g ∗ x)(t) =
∫ t
−∞ drg(r)x(t− r)

The filter is causal, since it is implemented by a differential equation and the Laplace transform
yields

(70) R(s) = G(s)X(s),

where G(s) denotes the transfer function of the encoding filter.

With this definition the cross-spectrum is written as

(71) Pyx(ω) = 〈〈ỹ(ω)〉y|xx̃∗(ω)〉x = G(iω)Pxx(ω).

This shows us that although we are computing the cross-spectrum of stimulus and spike train the response
filter G(iω) for the instantaneous firing rate suffices. This simple relation reminds us of the fact that the
cross-spectrum is not really a second order quantity, but can be exactly determined by linear response
theory. The spike train spectrum Pyy(ω), on the other hand, is truly a second order quantity, viz, the
Fourier transform of the auto covariance, and can not be related to the linear response filter without
further approximations.

11.1 Instantaneous firing rate in the continuum limit

The instantaneous firing rate can be estimated via binning and trial averaging
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4∆r(k∆): 0 3 1 0 0 0 0 3 1 0 0 0 1 2 1 0
Trials: 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0

Two equivalent descriptions1 of Markov dynamics exist

(i) the path view,

(72) ẋ = u(x, t) = f(x) + g(x)ξ(t);

(ii) the ensemble view

ṗ(x, t) =?.

For (i) one can simulate many paths of a stochastic differential equation, with different intitial conditions
and noise realisations. Histograms can provide the ensemble statistics. But it is also possible to find an
evolution equation for the whole ensemble.

The relation between the two can be formally established by the

Def. (empirical measure): Given a stochastic path realisation, x(t), from Eq. (72) the empirical measures
is

(73) %(y, t) = δ(x(t)− y).

With all the lovely properties of a δ-function.

The probability density

(74) p(y, t) = 〈%(y, t)〉,

where the average is over all paths, x(t), and therefore over all realisations of the noise process ξ(t).

The chain rule yields
∂
∂t%(y, t) = ẋ(t) ∂

∂x%(y, t) = − ∂
∂y%(y, t)u(x(t), t)

Solving such a PDE involves time integration or other integral transformations (Fourier and Laplace’s).
Since∫

dy δ(x(t)− y)f(y) = f(x(t)) =
∫

dy δ(x(t)− y)f(x(t))

Therefore

(75) ∂
∂t%(y, t) = − ∂

∂y%(y, t)u(y, t) = − ∂
∂yf(y)%(y, t)− ∂

∂y g(y)ξ(t)%(y, t)

Averaging on both sides results in
∂
∂tp(y, t) = − ∂

∂yf(y)p(y, t)− ∂
∂y g(y)〈ξ(t)%(y, t)〉.

The correlation between a stochastic process ξ(t) and a nonlinear functional of it is given by the
Novikov-Furutsu-Donsker formula

(76) 〈ξ(t)%(y, t)〉 = − 1
2 〈

δ%
δξ(t) 〉 = − 1

2
∂
∂y g(y)p(y, t)

All to gether we have the

Def. (Fokker-Planck equation): The FPE correpsonding to Eq. (72) is

(77) ∂
∂tp(y, t) = 1

2
∂
∂y g(y) ∂∂y g(y)p(y, t)− ∂

∂yf(y)p(y, t).

This is a diffusion equation. It can be written in the form
1Similar to the particle and wave duality in quantum mechanics.
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(78) ∂
∂tp(y, t) = − ∂

∂yJ(y, t).

J(y, t) = f(y)p(y, t)− 1
2g(y) ∂∂y g(y)p(y, t)

One needs boundary conditions and initial conditions to solve this PDE.

11.2 Phase flux = firing rate

For convenience rewrite the I/O-equivalent phase oscillator from Eq. ((???)) as

(79) φ̇ = f0 + z(φ)x(t) + σ ξ(t).

Here, as opposed to Eq. ((???)) ~Z(φ) · ~η(φ, t) was split into the part that results from the presented
stimulus, now denoted x(t), and the part that originated from, e.g. intrinsic noise. From Eq. (27) the
perturbation vector has

~η =

 x(t)
σ1(v(φ))ξ1(t)

...

.

As long as the intrinic noise is fast enough compared to the stimulus an averaging can be applied2 to
obtain an effective diffusion

σ2 =
∫ 1

0 dφ
∑
i σ

2
i (vLC(φ)),

which enters Eq. (79). The benefit is that the corresponding The Fokker-Planck equation

(80) ∂
∂tp(φ, t) = σ2

2
∂2

∂φ2 p(φ, t)− ∂
∂φ (f0 + Z(φ)x(t))p(φ, t) = − ∂

∂φJ(φ, t)

is tractable in a perturbation expansion. But first, remember what is the goal: Identification of the
forward filter g(t) in r(t) =

∫ t
−∞ dr g(r)x(t− r).

0 1 ϕ

p(
ϕ,

t=
1)

spike

flux

Phase density

r(t) = J(1, t) = (f0 + Z(φ)x(t))p(φ, t)− σ2

2
∂
∂φp(φ, t)

∣∣∣
φ=1

The equation is solved with the following perturabtion ansatz

(81) p(φ, t) = p0(φ) +
∑
i pi(φ, t),

2This can be done formally using Chapman-Enskog or adiabatic elimination procedures. The derivation may be included
in to future.
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with the normalisation requirement

(82)
∫

dφ p0(φ) = 1 and ∀i ∈ IN, t ∈ IR :
∫

dφ pi(φ, t) = 0.

The pi(φ, t) are assumed small correctin terms, given that the stimulus x(t) is also small.

at the same time one gets

J(φ, t) = J0(φ) +
∑
i Ji(φ, t)

In perturbation theory one solves iteratively the equations of the same order

O(0): For the lowest order the stimulus x(t) = 0 the FPE is

ṗ0 = σ2

2
∂2

∂φ2 p0 − f0
∂
∂φp0.

This equation is homogeneous so we find a time independent steady state solution

p0(φ) = 1.

One may test this by back insertion. Here both the boundary conditions and Eq. (82) are
inforced. The solution can be inserted into the definition of the flux to obtain the zeroth order
flux

J0 = f0p0 = f0

The next order involves the time-dependent stimulus

O(x): Note that mulitplying two terms of order O(x) yields a term of order O(x2) and is discarded. One
is left with

ṗ1 = σ2

2
∂2

∂φ2 p1 − f0
∂
∂φp1 − p0x(t) ∂

∂φZ(φ)

To turn the PDE into an algebraic equation one can apply both the Fourier series expansion
and the Laplace transform. For this the Laplace transform of the stimulus is denoted as X(s)
and the periodic function Z(φ) =

∑∞
k=−∞ cke

i2πkφ

sP1(k, s) = − (2πkσ)2

2 P1(k, s)− f0i2πkP1(k, s)−X(s)i2πkck
Solving for P1(φ, s)

P1(φ, s) =
∑∞
k=−∞ P1(k, s)ei2πkφ =

∑∞
k=−∞

i2πkckX(s)ei2πkφ
s+(2πkσ)2/2+i2πkf0

For brevity define the pole νk = −(2πkσ)2/2− i2πkf0

The first order flux is

J1(k, s) = f0P1(k, s) + ckX(s)− i2πkσ2

2 P1(k, s)

= f0P1(k, s) + s−νk
i2πk P1(k, s)− i2πkσ2

2 P1(k, s)

and

i2πkJ1(k, s) = i2πkf0P1(k, s) + (2πkσ)2

2 P1(k, s) + (s− νk)P1(k, s) = sP1(k, s)

J1(1, s) =
∑∞
k=−∞

sck
s−νkX(s)

Happily and consistently one finds

G(s) =
∑∞
k=−∞

sck
s−νk

The power spectrum correponds to the imaginary axis, G(iω). The low frequency limit is

limω→0G(iω) = c0 = 〈Z(φ)〉.

With ck = ak + ibk, the high frequency limit is

limω→∞G(iω) =
∑∞
k=−∞ ak = Z(0).
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12 No free lunch: energy and information
processing
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