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Information processing in the brain crucially depends on encoding properties of single neurons,
with particular relevance of the spike-generation mechanism. The latter hinges upon the bifurcation
type at the transition point between resting state and limit cycle spiking. Prominent qualitative
changes in encoding have previously been attributed to a specific switch of such a bifurcation at the
Bogdanov-Takens (BT) point. This study unveils another, highly relevant and so far underestimated
transition point: the saddle-node loop bifurcation. As we show, this bifurcation turns out to induce
even more drastic changes in spike-based coding than the BT transition. This result arises from
a direct effect of the saddle-node loop bifurcation on the limit cycle and hence spike dynamics,
in contrast to the BT bifurcation, whose immediate influence is exerted upon the subthreshold
dynamics and hence only indirectly relates to spiking. We specifically demonstrate that the saddle-
node loop bifurcation (i) ubiquitously occurs in planar neuron models with a saddle-node on invariant
cycle onset bifurcation, and (ii) results in a symmetry breaking of the system’s phase-response
curve. The latter entails close to optimal coding and synchronization properties in event-based
information processing units, such as neurons. The saddle-node loop bifurcation leads to a peak in
synchronization range and provides an attractive mechanism for the so far unresolved facilitation of
high frequencies in neuronal processing. The derived bifurcation structure is of interest in any system
for which a relaxation limit is admissible, such as Josephson junctions and chemical oscillators. On
the experimental side, our theory applies to optical stimulation of nerve cells, and reveals that these
techniques could manipulate a variety of information processing characteristics in nerve cells beyond
pure activation.

Keywords: phase-response curve, saddle-node homoclinic orbit, saddle-node noncentral homoclinic, saddle-
node separatrix-loop, homoclinic orbit, saddle separatrix loop, membrane capacitance, infrared neural stim-
ulation

I. INTRODUCTION

Survival in a complex environment often demands ner-
vous systems to provide acute senses, intricate computa-
tions and speedy reactions [1], carried out in an economi-
cal fashion [2]. Efficient neuronal information processing
is hence considered an evolutionary favorable trait [3].
Information processing can be optimized on the level of
neuronal networks [4], but also on the level of single cells
[5–7]. For the latter, tuning the cell’s voltage dynamics
into a regime that flexibly supports computational needs
is decisive.

In this study, we describe a point of drastic transi-
tion in neuronal single-cell dynamics with consequences
for information processing and network synchronization.
While the underlying bifurcation is not unknown [8], its
consequences for neural processing are severely underes-
timated. This article shows that the transition in ques-
tion turns out to be a ubiquitous feature in (planar)
type-I neuron models, known to describe various neu-
rons, ranging from isolated gastropod somata (Conner-
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Stevens model as stated in Ref. [9]) to hippocampal neu-
rons [10, 11].

Nerve cells are thought to encode information in the
sequence of spikes produced in response to their input.
What is encoded, crucially depends on the specific mech-
anism of spike generation [12–16]. Different types of
spike generation were first classified by Hodgkin [17] and
later linked to particular bifurcations ruling the transi-
tion from rest to spiking [18, 19]. The detailed analysis of
bifurcations in single neurons has so far explained many
of the complex responses that neurons show, e.g., burst-
ing or rebound spiking [19–21]. The mechanisms of other
response properties, such as the sharp voltage increase at
spike onset, are still a highly debated topic [12, 22, 23].

Recently, the ability of neurons to change the mecha-
nism of spike generation under physiological conditions
has attracted the interest of both theoreticians and ex-
perimentalists [24–27]. Attention was mostly directed
at the transition between the two traditional excitabil-
ity types, which involve either a fold (saddle-node) or
a Hopf bifurcation [Fig. 1(a)], along with their differ-
ential subthreshold filtering properties [28–31]. Here,
we investigate an alternative transition, which switches
the spike onset from a saddle-node on an invariant cycle
(SNIC) bifurcation to a saddle homoclinic orbit (HOM)
bifurcation [Fig. 1(b)]. This transition is organized by a
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Figure 1. Color) The transition from rest to spiking in re-
sponse to an increase in input current IDC requires (a) that
the resting state looses stability (illustrated are fold and sub-
critical Hopf bifurcations) and (b) the creation of a limit cycle
(illustrated are saddle homoclinic orbit (HOM) and SNIC bi-
furcations). The membrane capacitance Cm allows to switch
between these bifurcations. The separation function, sep,
marked in red, measures the distance between the stable and
unstable manifold of the saddle. The overlap of both, i.e.,
sep = 0, results in a homoclinic orbit.

codimension-two bifurcation: the saddle-node loop (SNL)
bifurcation [32] [33]. As we demonstrate, the SNL bifur-
cation causes an abrupt change in phase-response curve,
with far-reaching functional consequences for spike-based
coding. Moreover, the increase in synchronization ability
of individual cells observed at an SNL bifurcation affects
network synchronization [Fig. 2], with potential relevance
for various pathological conditions ranging from epilepsy
to Parkinson’s disease [34, 35].

SNL bifurcations can occur with several bifurcation pa-
rameters, for example the time constant of the gating ki-
netics [21]. In this study, we identify the separation of
time scales between voltage and gating dynamics as the
decisive bifurcation parameter, underlying the effect of
other parameters, such as capacitance or temperature.
Starting at a SNIC bifurcation in planar general neuron
models, we demonstrate that a variation in the separa-
tion of time scales provokes a generic sequence of firing
onset bifurcations. Compared to other bifurcation stud-
ies, which rely on a local unfolding of a codimension-three
bifurcation [36, 37], our approach proves the generic bi-
furcation structure including appearance and ordering
of codimension-two bifurcations on a global scale not
restricted to local analysis. The composed bifurcation

diagram hence predicts the behavior of a class of neu-
rons over the whole range of time-scale parameters, and
thereby warrants a direct comparison with biological neu-
rons.

The organization of the paper reflects the intricate re-
lation between the dynamical and computational aspects
of the SNL bifurcation. Formally, this relation is estab-
lised via the phase-response curve (PRC) [38]. While
Sec. II introduces the phase-response curve as spike-
based stimulus encoder, Sec. III describes how it can
be identified from the limit cycle of a dynamical sys-
tem. With the relation established, Sec. IV proves that
a symmetry breaking of the phase-response curve occurs
at SNL bifurcations. The functional consequences for
coding and synchronization in spiking systems are dis-
cussed in Sec. V. The significance of these consequences
are perpetuated by the results in Sec. VI, where we prove
that SNL bifurcations generically occur in planar neuron
models.

II. SPIKE-BASED INFORMATION ENCODER

The following two sections introduce phase oscillator
models and conductance-based neuron models, which we
use to describe neuronal dynamics on two different levels,
the spike times, and the underlying membrane voltage,
respectively. In many nervous systems, the integration of
sensory stimuli from multiple modalities into an appro-
priate behavioral response is achieved by translating the
impinging information into a series of spike times, {tspk },
a universal code for computation [39]. A single neuron
can be surmised as a spike time encoder that maps in-
put signals, I(t), to a spike train, y(t) =

∑
k δ(t − t

sp
k ).

One way to formally identify a spike encoder from a bio-
physical model of membrane voltage dynamics is the re-
duction to a phase equation producing the same input-
output mapping (i.e., an input-output (I/O) equivalent
phase oscillator [40]). The I/O equivalent phase equation
is used throughout the paper to derive characteristics of
neuronal information processing, such as the maximal
rate at which information is transmitted, or the ability
of neurons to synchronize their activity. Similar settings
apply to many system ranging from chronobiology [41]
to pulsars [42], where the only observations of the com-
plex dynamical system are pulse-like threshold crossings
resulting in an event time series.

The following analysis assumes tonic responses of a
mean-driven neuron [29], i.e., spikes are emitted with
a mean spike rate, f0, in response to a constant mean
stimulus intensity, IDC, and their occurrence is modu-
lated by a time dependent, zero-mean signal, I(t), suffi-
ciently weak to only shift spike times. In this case, the
mapping of input to spike times is given by the phase-
response curve (PRC) of the neuron [43]. The PRC, Z,
relates the timing of occurrence of a weak perturbation
to the resulting temporal advance or delay of the follow-
ing spike, Z : φ 7→ ∆φ. The spike times {tspk } correspond
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Figure 2. Color) (a) Spike raster plot of two small glob-
ally coupled network of 5 Wang-Buzsaki models, one close to
the SNL bifurcation with Cm = 1.47 µF/cm2, the other at a
SNIC bifurcation with Cm = 1 µF/cm2. Synaptic connections
are modeled as δ-perturbations of 0.35 mV. The frequency
detuning of the neuron is approximately equally spaced be-
tween 5 and 11 Hz. (b) The phase locking index was cal-
culated between pairwise neurons i and j with phase φi,j as
〈ei2π(φi−φj)〉, where the brackets denote temporal averaging.
Error bars denote standard deviations.

to the level crossings of the phase, φ(tspk ) = k for k ∈ Z,
and their occurrence is governed by the phase equation

φ̇ = f0 + Z(φ)I(t) + ξ(t). (1)

The intrinsic noise ξ(t) and the input I(t) are as-
sumed to be zero-mean stochastic processes of differ-
ent time scales: ξ(t) is white noise, 〈ξ(0)ξ(∆t)〉 =
σ2δ(∆t) and I(t) is wide-sense stationary with correla-
tions 〈I(0)I(∆t)〉 = ε2C(∆t).

To linear order, the I/O equivalent spike train is y(t) =∑
k δ(k − φ(t)). In the following, the mean spike rate f0

in response to the mean drive IDC and the PRC Z(φ) are
implicitly taken to be functions of the parameters of the
detailed neuron model introduced below.

III. CONDUCTANCE-BASED NEURON MODEL

To investigate the mapping of input to spikes, our
model neurons are stimulated by a constant DC current
and a zero-mean, time-varying stimulus, Iin = IDC+I(t).
The dynamics of the membrane voltage v follows a cur-
rent balance equation, Iin = Icap+Iion. The input causes

a capacitive current, Icap = dCmv
dt (with membrane capac-

itance Cm) and an ionic current, Iion = Iion(v,mi, ...),
which is a function of v itself and the open probability of
ion channels given by their gating variables mi.

Combined, this so-called conductance-based neuron
model entails a dynamical system, Ẋ = F (X) +G(X, t),
with the following structure:

 v̇
ṁ
...

 =

 1
Cm

(IDC − Iion(v,m, ...) + I(t))
m∞(v)−m
τm(v)

...

 , (2)

where the dot ˙ denotes the derivative by time, F de-
termines the dynamics of the unperturbed system, and
G = C−1m I(t)ev is some time-dependent voltage perturba-
tion (ev represents the basis vector in voltage direction).
The dynamical variables consist of the voltage and the
gating variables such as m. The gating is typically mod-
eled by first-order kinetics (for details see Appendix A).

The input IDC acts as bifurcation parameter for the
bifurcations of both fixed point destabilization and limit
cycle creation [Fig. 1]. For our analysis, we focus on neu-
ron models in which the fixed point looses stability at
a fold bifurcation. To identify the I/O equivalent phase
model in Eq. (1), the PRC needs to be calculated for the
conductance-based model in Eq. (2). From a dynamical
systems perspective, the PRC Z is the periodic solution
to the adjoint of the first variational equation of the un-
perturbed dynamics in Eq. (2), Ẋ = F (X),

dZ

dφ
(φ) = −J>(φ)Z(φ), (3)

where > denotes the matrix-transpose and J = ∂F
∂X

is the Jacobian evaluated on the limit cycle. To com-
ply with Eq. (1), the PRC associated with input current
perturbations needs to be normalized as Z(φ) · F (φ) =
f0/Cm,∀φ. The resulting relation between PRC and pa-
rameters of the conductance-based neuron model allows
us to consider coding properties at different firing onset
bifurcations. In the following, we use the dynamics on
the homoclinic orbit to infer PRC properties of the limit
cycle that arises from the homoclinic orbit, and, for con-
venience, we refer to the limit cycle PRC as the PRC at
the limit cycle bifurcation (SNIC or SNL), i.e., ZSNIC or
ZSNL.

IV. A FLIP IN THE DYNAMICS ALTERS THE
PRC SYMMETRY AT AN SNL BIFURCATION

In a first step, we infer coding properties from the dy-
namics at firing onset bifurcations, in particular around
the SNL bifurcation. As bifurcations imply in general
qualitatively different dynamics [44], limit cycle dynam-
ics are expected to change at the switch in firing on-
set dynamics at the SNL bifurcation. But what are the
specific consequences for the way neurons encode stimuli
and synchronize in networks? To answer this question,
we start by discussing changes in limit cycle dynamics at
the SNL bifurcation. We then show that this also alters
the PRC in such a profound way that it has, in turn,
drastic implications for the resulting coding properties
discussed in Sec. V. To this end, we use the tight relation
between spike coding and PRC [Eq. (1)], as well as PRC
and dynamics [Eq. (3)].
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Figure 3. Color) Top to bottom: (a) Schematic illustra-
tion of the orbits at small SNL bifurcation, non-degenerated
SNIC bifurcation, and big SNL bifurcation, with semi-stable
(small single arrow) and strongly-stable manifold (double ar-
rows). These bifurcations occur in the Wang-Buzsaki model
for IDC ≈ 0.16 µA/cm2, Cm ≈ [1.47, 1, 0.09] µF/cm2. (b)
and (c) show the associated phase-response curves and trans-
fer functions, for IDC 2% above the fold bifurcation.

A. Orbit flip

We consider models with classical type-I excitabil-
ity where the transition from rest to repetitive firing is
marked by (i) the elimination of the resting state in a fold
bifurcation, and (ii) the existence of a limit cycle to which
the dynamics relax instead. This limit cycle is born at
a limit cycle bifurcation, which is in type-I neurons typ-
ically a SNIC bifurcation. At a codimension-two SNL
bifurcation, the limit cycle bifurcation switches between
a SNIC and a HOM bifurcation [Fig. 1(b)]. The fol-
lowing, model-independent analysis focuses on the small
SNL bifurcation that transitions from a SNIC orbit to
a small HOM orbit [Fig. 3(a)], because it entails more
drastic changes in PRC shape, as discussed later. The
big SNL bifurcation (transitioning to a big HOM orbit)
will be studied with numerical continuation [Sec. V].

The limit cycle created at a HOM, SNIC or SNL bifur-
cation arises from a homoclinic orbit to a saddle (HOM)
or saddle-node (SNIC, and also SNL). Under the assump-
tion of sufficiently large limit cycle periods, the slow ve-
locity in the vicinity of these fixed points contracts the
dynamics such that limit cycle properties, e.g., period
or PRC, can be extracted from a linear approximation
around the fixed point.

The linearized dynamics around the saddle-node fixed
point is given by its Jacobian. Assuming non-degeneracy,
the Jacobian has a single zero eigenvalue, associated with
the semi-stable manifold, while the other eigenvalues are

strictly negative (strongly-stable manifolds). Trajecto-
ries always leave the saddle-node along the semi-stable
manifold. When a trajectory loops around in a homo-
clinic orbit, it can either re-approach the saddle-node
along the same manifold (SNIC bifurcation), or along
the much faster, strongly-stable manifold (SNL bifurca-
tion). The approach of the saddle-node at an SNL bi-
furcation flips from the semi-stable manifold to one of
the strongly-stable manifolds (hence orbit flip bifurca-
tion [45]) [Fig. 3(a)]. For neuron models, this flip can be
induced by a scaling of the relative speed in the voltage
and gating kinetics [Fig. 4]. When the saddle-node disap-
pears after the fold bifurcation, its remaining ghost still
dominates the resulting limit cycle dynamics. The limit
cycle period drastically decreases around the SNL bifur-
cation [Fig. 5(a), see also [8]], mainly because of the sep-
aration of time scales between strongly-stable and semi-
stable manifold, which renders the approach along the
strongly-stable manifold much faster than the approach
along the semi-stable manifold.

B. PRC symmetry and Fourier modes

Numerical continuation of several neuron models shows
that the PRC is drastically altered at the SNL bi-
furcation. Exemplified in Fig. 3(b) for the Wang-
Buzsaki model [Sec. A], the symmetric PRC at a
(non-degenerated) SNIC bifurcation becomes increas-
ingly asymmetric when an increase in membrane capaci-
tance tunes the model towards the SNL bifurcation. The
strong asymmetry at the SNL bifurcation directly affects
the synchronization ability of the neuron [see Sec. V].

The sudden occurrence of PRC asymmetry at an SNL
bifurcation can be directly inferred from the orbit flip in
the dynamics described in the last section [Sec. IV A].
The PRC peaks when the phase reaches the ghost of the
saddle-node, where the slow dynamics allow infinitesimal
perturbations to maximally advance phase. In the case
of the SNIC bifurcation, the same velocity governs ap-
proach and exit of the ghost, both aligned with the semi-
stable manifold [Fig. 4, for details see Appendix B]. The
orbit flip to the strongly stable manifold at the SNL bi-
furcation either decreases or increases the time spent on
the approach compared to exit for the small or big SNL,
respectively. This in turn breaks the symmetry of the
PRC at the SNIC bifurcation by advancing or delaying
the phase at which the maximum of the PRC resides.

Neglecting the fast approach at the small SNL bifurca-
tion, it seems as if the flow of the limit cycle trajectory is
directly injected at the ghost. Because the exit dynamics
at SNL and SNIC bifurcations are similar, the PRC at
the small SNL bifurcation appears as a rescaled version
of the second half of the PRC at the SNIC bifurcation,
Zsmall SNL(φ) ∝∼ ZSNIC(0.5φ + 0.5). This reasoning is
supported by numerical continuation [Fig. 3(b), Fig. 4],
and explains the observation that the limit cycle period is
approximately halved at the SNL bifurcation [Fig. 5(a)].
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Figure 4. Color) Phase-response curve (left) and phase
plot around the saddle-node (right) for (a) a non-degenerated
SNIC bifurcation with Cm = 1 µF/cm2 and (b) a small SNL
bifurcation with Cm ≈ 1.47 µF/cm2 in the Wang-Buzsaki
model with the limit cycle period fixed in both cases to 2 Hz.

The necessity of the PRC symmetry breaking at the
SNL bifurcation can also be seen from normal form the-
ory. For the SNIC bifurcation (and the supercritical Hopf
bifurcation), the PRC is a simple trigonometric function,
ZSNIC(φ) ∝ 1 − cos(2πφ) (ZHopf(φ) ∝ sin(2πφ)) [46].
Approached from the SNIC, the small SNL bifurcation,
however, registers a sudden emergence of higher Fourier
modes in the PRC. On the other side of the small SNL
bifurcation, the canonical PRC at a small HOM bifur-
cation is an exponential with some decay constant τ ,
ZHOM(φ) ∝ exp(−φ/τ) [46, 47]. Hence, in contrast to
the trigonometric PRCs with a single Fourier mode at
the SNIC or supercritical Hopf bifurcations, the PRCs at
HOM and small SNL bifurcations have an infinite amount
of Fourier modes. This results in Gibb’s phenomenon if
finite approximations are used.

The significant increase in PRC Fourier modes, as well
as the breaking in PRC symmetry, are generic properties
of SNL bifurcations. The consequences for coding are
detailed in the next section [Sec. V].

V. SPIKE-BASED CODING AND
SYNCHRONIZATION AROUND SNL

BIFURCATIONS

While the previous section established changes in PRC
properties at SNL bifurcations using dynamical system’s
theory, this section takes up the computational perspec-
tive again, with the PRC as a spike-time encoder. From
the PRC, the following paragraphs derive various mea-
sures to probe the performance of an information encod-

ing system. The pertinence of these measures for spike-
based coding is discussed at the end of this section. We
start by interpreting the spike-time encoder as an in-
formation filter, which allows for the derivation of the
stimulus characteristics to which the neurons are partic-
ularly sensitive [Sec. V A]. The transmission of informa-
tion through such a filter is quantified in Sec. V B. The
remaining paragraphs consider the ability of the neuron
to align its activity to an entraining stimulus, either in
the context of stochastic synchronization due to a com-
mon input [Sec. V C], or by classical synchronization, for
example with the population activity [Sec. V D]. All four
measures peak around the SNL bifurcation. Two factors
are decisive: The reduced limit cycle period at the SNL
bifurcation and the PRC symmetry breaking with the
emergence of high frequency Fourier modes. Both occur
generically at SNL bifurcations [Sec. IV], such that the
consequences derived in this section generalize to other
information-processing systems beyond neuroscience. In
particular, neurons close to an SNL bifurcation behave
radically differently from what is expected for SNIC neu-
rons that show traditional type-I excitability.

A. High-frequency transmission peaks around SNL
points

The natural environment is brimming with dispensable
information from which sensory systems filter out be-
haviorally relevant information [49–51]. From a compu-
tational perspective, frequency band selectivity is given
by the first-order relationship between input and output,
the linear response function (first-order Volterra expan-
sion of the full non-linear relationship). In biological sys-
tems, this can be probed by a broad-band noise stimulus.
The Laplace transform of the linear response function
is known as the transfer function, H(s). It can be de-
rived from the noisy phase oscillator [Eq. (1)], with PRC
Z(φ) =

∑
k cke

i2πkφ, as [16]

H(s) =

∞∑
k=−∞

sck
s− νk

, (4)

with s ∈ C and poles at νk = −i2πkf0 − (σk)2/2 for
k ∈ Z. The transfer function H(s) in Eq. (4) estab-
lishes a link between PRC coefficients and filter charac-
teristics. The low frequency limit of the transfer spec-
trum, |H(i2πf)|, is given by the mean for the PRC,

limf→0 |H(i2πf)| = c0 = Z(φ), and informs us whether
the system can track slow signals. On the other hand,
the higher the frequencies present in |H(i2πf)|, the faster
the signals a neuron can follow. Each non-zero Fourier
mode of Z(φ) results in a spectral peak. The peaks of the
spectrum are given by the poles νk, located at multiples
of the neuron’s mean spike rate, f0.

Near the SNL bifurcations, H(s) passes consider-
ably higher frequencies than at the SNIC bifurcation
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Figure 5. Color) Coding properties against the capacitance
Cm for the Wang-Buzsaki model with input fixed at 2% above
limit cycle onset at IDC ≈ 0.16 µA/cm2. (a) Limit cycle pe-
riod. (b) Relative limit cycle (LC) attraction given by the
ratio of the limit cycle attraction time (inverse of the Floque
exponent) and the period. A small LC attraction supports
the validity of the phase description [48]. (c) Information rate
as defined in [16], see Sec. V B, with zoom below. Note the
maxima in proximity of both SNL bifurcations. (d) Maximal
amplitude of the odd part of the PRC (entrainment range nor-
malized by the coupling strength assuming δ-coupling; abbre-
viated sync). (e) Magnitude of the Lyapunov exponent, |λ|,
of the locking state to a time-varying white noise stimulus.

[Fig. 3(c)], because the number of spectral peaks is di-
rectly determined by the higher number of Fourier modes
in ZSNL (which is infinite in the case of the small SNL
bifurcation).

Note that ZHopf implies that the transfer spectrum of a
neuron near a supercritical Hopf bifurcation has a single
peak and suppresses low frequencies, |H(0)| = 0. This
is in contrast to the SNL, SNIC and HOM bifurcations,
which all pass arbitrarily slow signals. Although the spec-
trum of the Hopf bifurcation has more power beyond its
peak compared to the SNIC neuron, it is only at the SNL
and HOM bifurcations that individual mean-driven neu-
rons can truly follow frequencies much higher than their
own firing rate.

B. Mutual information peaks around SNL points

According to the data processing inequality [52], the
output of a neuron is an incomplete representation of

the information it receives as input. How much a certain
ensemble of input patterns, I(t), is able to change a neu-
ron’s output ensemble, y(t), is quantified by the mutual
information rate, M(y, I). A lower bound to the mutual
information rate, Mlb 6 M , results from the transfer
function [16, 53]

Mlb =

∫ fc

0

df ln

(
1 +
|H(i2πf)|2PII(f)

Py0y0(f)

)
, (5)

where H is defined in Eq. (4), and P is the power spec-
trum of input I(t), respectively unperturbed output y0.
The input spectrum PII is taken to be band-limited white
noise with cutoff frequency fc, PII = ε2/fc, ∀0 6 f 6 fc
and PII = 0 else. According to Eq. (5), the information
at a particular frequency is high if the power of the out-
put spectrum, |H(i2πf)|2PII(f), is high compared to the
power of spike trains without input, Py0y0 . Mlb sums up
information in all frequency bands. The increase of infor-
mation transmission around the SNL point [Fig. 5(c)] is
a result of the facilitation of high frequency transmission,
cf. Sec. V A.

C. Spike-time reliability and locking to stimuli
peak around SNL points

The information transmission of a neuron also depends
on how reliable it encodes a time-varying stimulus into a
sequence of spike times [54]. This can be quantified by
observing how fast an uncoupled population of identical
neurons gets synchronized by a common time-varying in-
put (stochastic synchronization [55, 56]). Assuming a set
of identical phase oscillators from Eq. (1) with random
initial conditions and white noise input, the relaxation
time constant is given as the reciprocal of the Lyapunov
exponent of the phase fixed points [57]

λ = −ε2
∫ 1

0

(
dZ(φ)

dφ

)2

dφ. (6)

For neural computations, λ−1 sets for example the inte-
gration time scale a neuron requires to detect new tran-
sient stimuli (evoked responses). The interaction time
scale is minimized at the SNL bifurcations [Fig. 5(e)].
The peaks of the Lyapunov exponent λ furthermore im-
ply efficient locking to a common input. High Fourier
modes, responsible for the peaks around the SNL points,
are emphasized by the derivative in Eq. (6), which
amounts to a multiplication of the kth-mode by k. This
results in an even stronger stochastic synchronization
than in the bi-phasic PRCs emerging from some type-
II excitable neurons [56].

D. Synchronization peaks around SNL points

The asymmetry of the PRC scales the frequency detun-
ing over which a neuron entrains to its input (the width
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of the Arnold tongue [48, 55]). The input can either be a
periodic signal or the recurrent input from other neurons
in a network. Here, we use synchronization in the sense
of a constant phase relation between oscillators, compare
Fig. 2. The relation between PRC and synchronization
can be illustrated by two delta-coupled phase oscillators,
φ1,2, as defined in Eq. (1),

φ̇1,2 = f1,2 +Q(φ1,2 − φ2,1) + σ ξ1,2, (7)

where the coupling function Q results from an averag-
ing step if the interaction between both oscillators are
assumed to be weak [58], Q(∆) =

∫∞
0
Z(ϕ)G(ϕ+ ∆)dϕ ,

where G(φ) is the time-varying synaptic input evaluated
on the limit cycle. The phase difference, ψ = φ1 − φ2,
evolves as ψ̇ = ∆f +Qodd(ψ), where Qodd(ψ) = Q(ψ)−
Q(−ψ) is twice the odd part of the coupling function.
Synchronization (i.e., a constant phase lag ψ) requires

ψ̇ = 0, and the maximal admissible frequency detun-
ing ∆f is given by the image of Qodd. In the case of
δ-coupling, Qodd is equal to twice the odd part of the
PRC, Zodd, so that phase locking only occurs if ∆f ∈
[minZodd,maxZodd]. In Fig. 5(d), the synchronization
range maxZodd − maxZodd is plotted. The increased
synchronization range will also manifest itself in globally
coupled networks of the type studied in Refs. [59, 60].

The synchronization boost around the SNL points
[Fig. 5(d)] arises from period scaling and PRC asymme-
try, alongside a significant odd part in ZSNL compared to
ZSNIC. For two coupled oscillators, a small SNL bifurca-
tion favors alternated spiking, which is sometimes called
anti-synchronization. This is in contrast to the stable
in-phase locking that is observed for PRCs shaped like a
negative sine [36, see appendix].

E. Coding at an SNL bifurcation

In summary, Secs. V A to V D suggest that passing
the SNL point affects a variety of neural coding schemes.
Regarding spike-timing codes, the shape of the PRC at
the SNL bifurcation is similar to the optimal PRC for
synchronization by common Poisson input [61]. Fur-
thermore, the lower bound of the information rate is in-
creased, because higher frequencies emerge in the linear
response function. Regarding phase codes [62], a conse-
quence of the PRC at the SNL bifurcation is a temporally
more precise locking of spikes to a reference signal. This
prevents spurious spikes, i.e., fewer phase slips occur, re-
ducing the decoding error. Regarding rate codes, the
lower bound of the decoding error (Cramer-Rao bound)
is connected to the slope of the firing rate as a function
of the input IDC [9]. At firing onset, this slope is known
to be larger for a HOM bifurcation compared to a SNIC
bifurcation [21], and hence rises around the SNL point,
potentially minimizing the decoding error.

Figure 6. Color) (a) Bifurcation diagram of the Wang-
Buzsaki model under variation of membrane capacitance Cm

and input current IDC. With Cm = 1 µF/cm2, the limit cycle
arises from a SNIC bifurcation. Increasing Cm leads to the
small SNL at Cm ≈ 1.47 µF/cm2. Dashed areas mark bista-
bility. (b) Decreasing Cm leads to the big SNL, and then to
a Bogdanov-Takens (BT) bifurcation. Note that a change of
stability in the big HOM branch, not shown here, follows from
Ref. [64]. (c) Schematic illustration for the limit Cm → 0,
in which the system corresponds to a relaxation oscillator:
Drawn in the state space of gating variable n versus voltage
v, the solid line with inverted N-shape represents the voltage
nullcline, and the dashed line represents the gating nullcline.
At some IDC, the resting state looses stability and a big HOM
orbit around all fixed points (green) is created.

VI. GENERIC OCCURRENCE OF SNL
BIFURCATIONS

The multifarious consequences of the SNL bifurcation
discussed in Sec. V will be of particular relevance for neu-
ronal processing if the SNL bifurcation generally occurs
in realistic neuron models. Next, we demonstrate that
indeed any two-dimensional, type-I conductance-based
neuron model can always be tuned to SNL bifurcations.
More precisely, we show that the SNL bifurcation is an
essential element in the bifurcation diagram that uses
input current and membrane capacitance as control pa-
rameters. This bifurcation diagram also allows us to re-
late the SNL bifurcation to other bifurcations such as the
Bogdanov-Takens (BT) bifurcation, classical termed the
switch of type-I/II excitability [58, 63].

Concentrating on bifurcations relevant for neuronal
spiking (i.e., bifurcations affecting a stable limit cycle),
Fig. 6 shows a bifurcation diagram of the Wang-Buzsaki
model [Sec. A] with input current and membrane ca-
pacitance as control parameters. Along the dimension
spanned by the capacitance, two SNL bifurcations en-
close the SNIC bifurcation. The lower SNL bifurcation
corresponds to a big SNL bifurcation for which the aris-
ing limit cycle encircles the ghost of the saddle-node, and
the upper SNL bifurcation corresponds to a small SNL
bifurcation for which the ghost of the saddle-node lies
outside of the limit cycle [Fig. 3(a)]. In particular, de-
creasing the capacitance, an SNL point is passed before
the BT bifurcation is reached.
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We show in Appendix C that this bifurcation structure
generalizes (under mild assumptions) to planar neuron
models. The membrane capacitance Cm is used as bifur-
cation parameter in the general bifurcation diagram that
we construe, because it simply changes the time scale
of the voltage dynamics [Eq. (2)]. The proof separately
considers the lower and the upper part of the bifurcation
diagram. The lower part is based on the so-called re-
laxation limit with infinitely fast voltage dynamics that
arises from the limit Cm → 0 [Fig. 6(c)], where the bi-
furcation structure is known [64]. Non-zero capacitance
values are deduced from several observations that restrict
the path of limit cycle bifurcation branches in planar sys-
tems. The upper part of the bifurcation diagram is ex-
tracted from the unfolding of a BT point.

Our derivation may be an interesting starting point
for similar results in other dynamical systems in which
the time scale of a single dynamical variable is used as
bifurcation parameter. For our planar neuron models,
we find that the SNIC bifurcation branch is generically
enclosed by two SNL bifurcations that are reached by an
adaptation of the voltage time scale. In particular, our
results show that a continuous variation of the voltage
time scale reaches the BT point only after passing one of
the SNL bifurcations.

VII. DISCUSSION

This article explores the intricate relation between SNL
bifurcations and neuronal processing. SNL bifurcations
entail optimal synchronization and coding properties,
with several measures of information and synchroniza-
tion peaking in the vicinity of SNL bifurcations [Fig. 5].
Moreover, the approach to the SNL point could be a
mechanism to unify recent explanations of how neurons
transmit frequencies far above the cutoff given by their
membrane time constant [12, 23, 65, 66]. Indeed, ho-
moclinic neurons at the small SNL point seem to resem-
ble the idealized perfect integrate-and-fire neuron [67], as
both are transmitting arbitrarily high frequencies.

Drastic changes in spike-based coding can be expected
at a bifurcation that affects not only the fixed points,
but also the stable limit cycle. This is the case for the
SNL bifurcation, in distinction to the BT point classically
referred to as the transition between type-I to type-II
excitability: In neuron models, the BT-associated Hopf
bifurcation is typically subcritical. The limit cycle aris-
ing at the subcritical Hopf bifurcation is unstable and has
only indirect implications for spiking dynamics. The sub-
critical Hopf bifurcation affects the resting state, chang-
ing subthreshold dynamics and filtering [28, 30, 36, 58].
Spike-based coding is in this case only affected if the
system behaves like a fluctuation-driven escape problem
[13, 68], while we focus on mean-driven limit cycle dy-
namics.

Note that models in vicinity of a BT point have a
different bifurcation structure than models such as the

original Hodgkin-Huxley (HH) model [69]. While in the
latter, the unstable limit cycle that terminates in the sub-
critical Hopf bifurcation is born at a fold of limit cycles
bifurcation, the normal form of the BT bifurcation shows
that the unstable limit cycle is in the former case born
at a HOM bifurcation [70]. This difference will proba-
bly affect the PRC of the stable limit cycle, for which
the canonical shape is still unresolved [71]. Moreover,
the identified generic bifurcation sequence shows that a
smooth change in time-scale parameters does not justify
the previously used heuristic formula that exploits a sin-
gle Fourier mode to interpolate between ZSNIC and ZHopf

[16, 72, 73].

As codimension-two bifurcation, the SNL bifurcation
is reached in neuron models by an appropriate tuning
of both the input current and one additional model pa-
rameter. Examples for the second control parameter
are the membrane capacitance, maximal gating conduc-
tances, tonic inhibition [36], neuromodulators [74], or
gating time constants [21]. With the membrane capaci-
tance as bifurcation parameter, we demonstrate for pla-
nar conductance-based models with a SNIC bifurcation
that, ubiquitously, an SNL bifurcation is the first bifur-
cation reached for lowered or increased capacitance, re-
spectively. With the three bifurcation parameters capac-
itance, input, and leak conductance, the identified se-
quence of bifurcations collapses into a codimension-three
cusp BT point [36, 37]. This potentially generalizes the
described bifurcation structure beyond the planar case.

Focusing on neuron models that spike at low firing
rates, where the dynamics are dominated by the bifur-
cation that creates the limit cycle, allows us to draw
model-independent conclusions. Furthermore, the used
phase description demands for small inputs compared to
the limit cycle stability. The strong stability of the limit
cycle around the SNL point, shown by the Floquet ex-
ponent [Fig. 5(b)], validates the phase reduction even
for reasonably sized inputs. Our setting with low firing
rates and relatively weak synaptic connections is typical
for cortical neurons [75, 76].

Our mathematical arguments rely on the relative time
scale between state variables as the bifurcation parameter
that takes us to the relaxation limit used in Appendix C.
The membrane capacitance is one such parameter. From
a biological perspective, the membrane capacitance is in
several aspects an interesting bifurcation parameter. The
effective membrane capacitance depends on cell parame-
ters such as the morphology of the neuron or the myeli-
nation of its axon [7], and it may hence be adapted on
developmental or evolutionary time scales. Furthermore,
the experimental method of infrared neural stimulation
uses a change in membrane capacitance to depolarize
neurons [77]. The neurons are stimulated by infrared
laser pulses [78], and the deposition of energy leads to
an increase in the membrane capacitance, changing the
capacitive current Icap = dCmv

dt = Ċmv+Cmv̇. The tran-
sient capacitance increase leads to a non-zero capacitive
term Ċmv, which can be sufficient to excite the neuron
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[77]. Our study concentrates on neuronal properties be-
yond this transient dynamics. We have demonstrated a
rich impact on neuronal dynamics of the specific value
of Cm, even in its steady state with Ċm = 0. For in-
frared neural stimulation, this implies that the observed
changes in capacitance, in addition to a short-term ex-
citation, could also push the neurons closer to an SNL
bifurcation, with potentially drastic implications for cod-
ing properties. Moreover, passing the SNL point causes
a region of bistability between limit cycle and resting
state Prest [Fig. 6(a-b)]. The consequential hysteresis re-
sults in spiking that persists beyond the duration of the
transient current stimulation. The respective switching
statistics (i.e., between silent periods and periodic firing)
and their dependence on the timing of excitation and in-
hibition may hence be characteristic of the different SNL
types and allow for a distinction between these dynam-
ical regimes, see also [21]. Overall, our results demand
for a careful interpretation of infrared neural stimulation
experiments because of our prediction that infrared neu-
ronal stimulation may drive neurons into a significantly
different dynamical regime.

Last but not least, our results suggest that also under
natural conditions, neurons may favor a position close to
an SNL point in order to profit from its unique coding
flexibility. On the other hand, SNL bifurcations may also
be relevant in pathology (e.g., epilepsy). Experimentally,
the measurement of phase-response curves is technically
involved, even more so if multiple dynamical regimes are
probed in the same neuron. Experimental reports exist
for the transition between type-I and type-II excitability
[36, 74]. While several studies report PRCs that are com-
patible with a spike onset either at a SNIC bifurcation
or at a HOM bifurcation [79–82], the observation of an
SNL bifurcation in an experimental setting remains an
open challenge.

In summary, our study consists of two parts: We have
first extracted from the dynamics at an SNL bifurcation
the phase-response curve, and used this knowledge to
infer the associated coding properties. Both the PRC
asymmetry and its high Fourier modes are generic prop-
erties at SNL bifurcations. Thereby, our results are not
only independent of the particular neuron model, but are
equally applicable to any system that allows for a phase
reduction. Moreover, we have demonstrated that SNL
bifurcations ubiquitously occur in a set of planar neuron
models. With the time scale of one dynamical variable
as bifurcation parameter, the structure of our proof is
likely to generalize to other systems with a subcritical
Hopf bifurcation in the relaxation limit, such as lasers
[83, 84], Josephson junctions [85–88], and chemical re-
actions [89, 90]. Together, both parts highlight the SNL
bifurcation as a hitherto underestimated bifurcation with
prominent importance for neuronal dynamics.
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Appendix A: Generic definition of
conductance-based neuron models

We consider a generic class of conductance-based neu-
ron models [36]:

v̇ =
Icap(v, ...)

Cm
=

1

Cm
(Iin − gL(v − vL)− Igating),(A1)

Igating =

n∑
i=0

gi(v − vi)
K∏
k=0

mpik
ik (A2)

where ion channel i has maximal conductance gi and
reversal potential vi and its open probability is given by a
product of gating variables (potentially to some power of
pik). Each gating variable mik of ion channel i is either a
function of the voltage, mik = mik∞(v), or relaxes expo-
nentially to its steady state value mik∞(v), with gating
kinetics given by

ṁik =
mik∞(v)−mik

τik(v)
(A3)

For numerical continuation, we use a single-
compartmental version of the Wang-Buzsaki model for
hippocampal pyramidal cells [11] with the following dy-
namics:

v̇ = (I + gL (EL − v) + Igate)/Cm,

ḣ = 5 (αh(v) (1− h)− βh(v)h),

ṅ = 5 (αn(v) (1− n)− βn(v)n),

with membrane capacitance Cm = 1µF/cm
2
, maxi-

mal conductances gL = 0.1µS/cm
2
, gNa = 35µS/cm

2
,

gK = 9µS/cm
2
, reversal potentials EL = −65mV, ENa =

55mV, EK = −90mV, and the following functions:

Igate = gNam∞(v)3h(ENa − v) + gKn
4(EK − v),

m∞ =

v+35
exp(−0.1 (v+35))−1

v+35
exp(−0.1 (v+35))−1 − 40 e−(v+60)/18

,

αh(v) = 0.07 exp(−(v + 58)/20),

βh(v) = 1/(1 + exp(−0.1 (v + 28))),

αn(v) = −0.01
v + 34

exp(−0.1 (v + 34))− 1
,

βn(v) = 0.125 exp(−(v + 44)/80).
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Appendix B: PRC symmetry

The PRC asymmetry at the SNL bifurcation is a direct
consequence of the broken symmetry in the dynamics at
the SNL bifurcation. This section gives more detail on
the relationship between dynamics and PRC, both in-
tuitively and with a mathematical argument. We will
describe first how the dynamics at the SNIC bifurcation
leads to a symmetric PRC and then show that these con-
ditions are not met at the SNL bifurcation, predicting
an asymmetric PRC at an SNL bifurcation. While the
arguments are presented with a small SNL bifurcation in
mind, they hold in a similar way for a big SNL bifurca-
tion.

As introduced in the main text, the orbit at a SNIC
bifurcation follows the semi-stable manifold of the saddle-
node fixed point, which corresponds to the central ma-
nifold of a fold bifurcation. The zero eigenvalue of the
Jacobian J at the saddle-node on the semi-stable mani-
fold eliminates the linear term. The leading second order
term results in a parabolic normal form. For dynam-
ics centered around x = 0, stimulated with input s, the
dynamics is

ẋ = s+ x2, (B1)

where all variables are chosen unitless for convenience.
The dynamics is symmetric around the saddle-node

fixed point, i.e., the orbit has corresponding velocities at
approach and exit of the saddle-node. The orbit flip at
the SNL bifurcation breaks this symmetry in the dynam-
ics, and, as we will show, also in the PRC.

From a mathematical perspective, the normal form al-
lows for a calculation of the PRC. We, however, will
use the normal form to directly analyze PRC symme-
try. For the SNIC bifurcation, the reflection symmetry
of the PRC can be inferred from the symmetry of the
dynamics: If x(t) is a solution of the dynamical system
given by Eq. (B1), then the same holds f or −x(−t),
x(t) is hence point symmetric in time, x(t) = −x(−t).
Derivation of the right-hand side of Eq. (B1) by x results
in a Jacobian linear in x, that is hence point symmet-
ric in x, J(x) = −J(−x). Inserting both into the adjoint
equation, Eq. (3), directly leads to a PRC reflection sym-
metric in time, ZSNIC(t) = ZSNIC(−t). In contrast, the
asymmetric dynamics at the SNL bifurcation lead to an
asymmetric PRC.

Intuitively, on an orbit that connects to a saddle-node
fixed point, the dynamics becomes arbitrary slow at the
fixed point. The limit cycle shows the slowest dynamics
in the same region in state space, in proximity to the
ghost of the former saddle-node. A perturbation that
propels the dynamics over the ghost of the saddle-node
will therefore maximally advance the next spike. The
maximum of the PRC is at the phase value that corre-
sponds to the the saddle-node. For a SNIC bifurcation,
the PRC maximum lies at φ = 0.5 because the symmet-
ric dynamics of a SNIC take equal time for the approach

(from φ = 0 to φ = 0.5) and the exit (from φ = 0.5 to
φ = 1) of the saddle-node. In comparison, the PRC max-
imum is shifted towards the left at the SNL bifurcation,
because the accelerated entry along the strongly-stable
manifold advances the saddle-node to earlier phases. The
shift of the maximum away from the center destroys the
symmetric shape of the PRC.

The symmetry breaking generalizes beyond the SNL
bifurcation: A saddle homoclinic orbit shows an asym-
metric PRC [46], if the saddle has different stabilities
along stable and unstable manifold, and hence non-
symmetric dynamics. In summary, we showed that the
symmetry breaking in the PRC is an immediate conse-
quence of the symmetry breaking in the dynamics that
occurs as orbit flip at the SNL bifurcation. Hence, the ob-
served symmetry breaking in the PRC is a general prop-
erty of the SNL bifurcation.

Appendix C: Mathematical argument for the generic
occurrence of the SNL bifurcation in planar models

We show in the following that, with a variation of the
time-scale parameter, such capacitance, in a broad set
of planar conductance-based models, a SNIC bifurcation
is always enclosed by two SNL bifurcations, and that a
decrease in capacitance passes the big SNL bifurcation,
and only afterwards reaches the BT point. Beyond the
BT point, a Hopf bifurcation destabilizes the resting state
before the fold bifurcation occurs.

To this aim, we prove that the general structure of the
bifurcation diagram [Fig. 6] holds for any planar neuron
model that conforms with our assumptions [Sec. C 1].

1. Model definition

We consider a generic class of type-I planar
conductance-based neuron models. The single gating
variable, n, commonly models the opening and closing
of a restorative current originating, say, from the potas-
sium ion channel. The dynamics is given by

(
v̇
ṅ

)
= F (v, n) =

(
1
Cm

(IDC − Iion)
n∞(v)−n
τn(v)

)
. (C1)

with Iion(v, n) = gL(v − vL) + gK n (v − vK), compare
Eq. A1.

We chose the model such that it fulfills the following
assumptions:

(A1) The firing onset of the model occurs, for some
capacitance value CSNIC and a specific input current
IDC = ISN1 (the threshold current), at a non-degenerated
SNIC bifurcation.

(A2) We demand that at the capacitance CSNIC, the
subthreshold dynamics for IDC < ISN1 relax to a sin-
gle stable fixed point, the resting state. We furthermore
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assume that with an increase in input current, the limit
cycle dynamics eventually terminates in a bifurcation de-
noted excitation block, after which the dynamics relaxes
again to a stable fixed point. This assumption prevents
diverging dynamics.

(A3) The nullcline of the voltage has an inverted N -
shape.

(A4) We require that n∞(v) from Eq. C1 is an in-
creasing, positive, bounded, twice differentiable function
that becomes sufficiently flat in the limit v → ±∞,
limv→±∞ v ∂vn∞(v) = 0. This assumption allows us to
use results from Ref. [36].

All of these assumptions are fulfilled in common neuron
models with type-I excitability.

2. Construction of the bifurcation diagram

The following proof establishes an ordering in a se-
quence of limit cycle bifurcations, whereby a SNIC is
enclosed by two SNL bifurcations. The ordering is estab-
lished by analyzing the relaxation limit as an anchoring
point. We thereby capitalize on recent results from the
relaxation limit, Cm → 0. As we will show, the ordering
that arises in this limit along IDC implies the same or-
dering along Cm, mainly because limit cycle bifurcation
branches cannot cross in planar systems.

The limit cycle bifurcation branches that we consider
lie in the region with IDC ≤ ISN1, because, for neuronal
firing, the limit cycle creation has to happen before (i.e.,
at lower IDC) or at the fold bifurcation at which the
resting state is eliminated. CSNIC separates the region
IDC ≤ ISN1 in a lower and upper subregion. Since the
occurrence of limit cycle bifurcations at CSNIC is pre-
vented by the requirement (A2) that stable dynamics
are given by a unique fixed point, all limit cycle bifurca-
tion branches lie either in one or the other subregion. In
the proof, we start with the lower subregion, and then
consider the upper one.

3. The lower part of the bifurcation diagram,
Cm < CSNIC

Observation 0 Vertical fold bifurcation branches:
Fixed point location depends on IDC, but not on Cm.
The nullclines of Eq. C1 are given by IDC−Iion(v, n) = 0
and n = n∞(v). The nullclines are independent of Cm,
and therefore also the location of the fixed points, be-
cause the fixed points sit at intersections of the nullclines.
Hence the location of the fold bifurcations is also indepen-
dent of Cm, which ensures that the fold branches [marked
with SN in Fig. 6(a)] are vertical in a bifurcation diagram
of Cm versus IDC.

Based on the inverted-N shape of the voltage nullcline
and the monotonous shape of the gating nullcline, we
can infer the existence of one to three fixed points. For
the following discussion, we name these fixed points, a

visualization of our nomenclature is shown in Fig. 6(c).
The number and location of the fixed points is set by
the input current IDC, which shifts the voltage nullcline
up or down in the state space. For low, i.e., subthresh-
old IDC, the model has a single, stable fixed point, Prest.
With an increase in IDC, the knee of the voltage nullcline
approaches the gating nullcline from below, and results
in a fold bifurcation at some IDC = ISN0. The fold bi-
furcation creates a saddle, Psaddle, and a node, Pblock.
Our assumptions ensure that Pblock is unstable because
(A2) requires that Prest is the only stable fixed point at
Cm = CSNIC. Increasing the input current further leads
to a second fold bifurcation at some IDC = ISN1. This
fold bifurcation annihilates Prest and Psaddle. Beyond the
bifurcation, Pblock remains as the only surviving fixed
point.

The saddle fixed point Psaddle only exists between ISN0

and ISN1. The association of HOM bifurcations with sad-
dles directly constrains their bifurcation branches to the
region ISN0 ≤ IDC ≤ ISN1. In an analogue way, Hopf bi-
furcation branches are constrained by the existence of the
associated focus fixed point: The Hopf branch that desta-
bilize the resting state Prest is restricted to input currents
below ISN1, and the other Hopf branch that changes the
stability of Pblock is restricted input currents above ISN0.
Further constraints will be developed throughout the fol-
lowing arguments.

Observation 1 Starting points for the branches of
big HOM and neighboring Hopf bifurcation: Anchor-
ing the bifurcation diagram in the limit Cm → 0
yields IbigHOM < IHopf. In the limit Cm → 0, the
conductance-based model is transformed into a relax-
ation oscillator with voltage as fast variable, as sketched
in Fig. 6(c) [91]. For this limit, de Maesschalck and
Wechselberger have identified the full bifurcation struc-
ture for generic planar neuron models [64]. Their The-
orem 2 demonstrates for sufficiently small Cm that an
increase in IDC results for model neurons such as ours
in a generic sequence of bifurcations. Relevant for our
consideration is the occurrence of a big HOM bifurcation
at input IbigHOM, and a subcritical Hopf bifurcation that
destabilizes Prest at IHopf. Their full bifurcation structure
ensures furthermore that neither the big HOM branch
nor the Hopf branch returns to the limit Cm → 0, which
is important to ensure the existence of a codimension-two
bifurcation at the other end. They state an ordering of
the bifurcation currents, IbigHOM < IHopf < ISN1, which
will be used in the following to infer the same ordering
at finite values of Cm.

Lemma 1 HOM branches cannot ”bend backwards”:
A variation in Cm generically breaks homoclinic orbits
to hyperbolic fixed points. In order to constrain the lo-
cation of HOM bifurcations in subsequent paragraphs, we
want to show that the tracing of a HOM branch leads us
always in one direction along the input current (increas-
ing or decreasing input). Equivalently, we can show that
a HOM branch cannot ”bend backwards” along the input
current dimension. This is the case if we show that HOM
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branches cannot have ”vertical parts”: A HOM branch
cannot align with a parameter variation exclusively in
Cm, because, as we show with this lemma, a variation in
Cm generically breaks the homoclinic orbit.

Homoclinic orbits arise when the trajectory of the un-
stable direction of a fixed point connects to its stable
direction, i.e., stable and unstable manifold overlap. A
parameter variation can separate stable and unstable ma-
nifold from each other, allowing for the definition of a dis-
tance. This distance is measured by the so-called separa-
tion function, sep [Fig. 1(b)]. For parameter values that
lie on the HOM branch, the separation function is zero,
sep(CHOM) = 0, and it increases to some finite value,
sep(Cm) > 0, if a variation in the parameter breaks the
homoclinic orbit, i.e., leaves the HOM branch. This is
analogue to a non-zero value of the partial derivative of
the separation function, which is known as the Melnikov
integral, M [for a derivation in planar systems see for ex-
ample Ref. [92], leading to Equation (6.12) that we use
in Eq. C3].

A variation in Cm breaks the homoclinic orbit if the
corresponding Melnikov integral evaluated on the homo-
clinic orbit is non-zero [45]. The Melnikov integral with
respect to Cm for a homoclinic orbit with flow h(t) is

M =

∫ ∞
−∞

K(t)F (h(t))
∂F (h(t))

∂Cm
dt (C2)

= −
∫ ∞
−∞

K(t)
(IDC − Iion(h(t)))2

C3
m

dt, (C3)

where K(t) = exp
(
−
∫ t
0

divF (h(s)) ds
)

. For our sys-

tem, the Melnikov integral is strictly positive, 0 < M ,
because (i) K(t) is, as an exponential function, strictly
positive, ∀t : 0 < K(t), and (ii), because we implicitly
assume the existence of a homoclinic orbit, the difference
of ionic and injected currents cannot be zero at all times,
hence ∃t : (IDC − Iion(h(t)))2 > 0. With that, the ca-
pacitance breaks the homoclinic orbit and thus tracing a
HOM branch along one direction results either in contin-
uously increasing or decreasing input current values on
the branch. This lemma is used in the following Obser-
vation 2 in order to pursue the big HOM branch starting
in the limit Cm → 0 [see Observation 1].

Observation 2 The big HOM branch eventually ap-
proaches the fold bifurcation at ISN1. Based on the di-
rectionality of the big HOM branch derived in the litera-
ture, we will show in this observation that the big HOM
branch eventually approaches the fold bifurcation branch
at which the resting state collides with the saddle. The
point of contact corresponds to an SNL bifurcation, as
we will show in subsequent paragraphs.

The statement of Theorem 2 by de Maesschalck and
Wechselberger states for sufficiently small Cm, in ad-
dition to the ordering used in Observation 1, that the
big HOM branch departs from its starting point to the
right, i.e., in the direction of increasing input current
[64]. This directionality of the big HOM branch gener-
alizes to larger values of Cm, because Lemma 1 prevents

”backward bends” of HOM branches. Given that the
big HOM branch does not return to the limit Cm → 0
[Observation 1], the big HOM branch eventually has to
approach the fold bifurcation at ISN1. The next lemma
ensures that the connection point is an SNL point.
Lemma 2 A HOM branch and the fold branch at ISN1

connect in an SNL bifurcation: A HOM branch is stable
when it connects to a non-degenerated fold bifurcation
involving a stable node. An SNL bifurcation involves a
stable homoclinic orbit that transitions between a HOM
bifurcation and a SNIC bifurcation. The homoclinic or-
bit of the HOM branch is stable, if the associated saddle-
quantity is negative (the sum of the two eigenvalues of
the associated fixed point). At the connection point with
the fold branch, the homoclinic orbit is associated with
a saddle-node fixed point arising from the collision of a
stable node and a saddle. It has one zero eigenvalue (pre-
requisite for the fold bifurcation) and one negative eigen-
value (the former stable node sets the stability of the
strongly-stable manifold). The sum evaluates to a nega-
tive saddle-quantity, ensuring a stable homoclinic orbit,
and hence an SNL bifurcation.
Lemma 3 The bifurcation sequence in the lower part

of the bifurcation diagram: For IDC = ISN1, increas-
ing Cm from zero passes first a BT point, then an SNL
point, before a non-degenerated SNIC bifurcation occurs,
CBT1 < Cbig SNL < CSNIC. Combining Observation 2
and Lemma 2, we conclude that the big HOM branch
connects to the fold bifurcation branch at ISN1 with a sta-
ble homoclinic orbit, i.e., in an SNL bifurcation. This big
SNL bifurcation happens at some point (ISN1, Cbig SNL),
with Cbig SNL < CSNIC because the big HOM branch can-
not pass the capacitance value of CSNIC as (A2) pro-
hibits stable limit cycle bifurcations for IDC < ISN1.
From Observation 1, we know for Cm → 0 that a Hopf
branch starts at IHopf, and that this branch does not
return to the limit Cm → 0. Because limit cycle bi-
furcation branches cannot cross each other in a pla-
nar system, the Hopf branch can furthermore not cross
the big HOM branch. Instead, it connects to the fold
bifurcation branch in a BT bifurcation at some point
(ISN1, CBT1). The ordering IbigHOM < IHopf from Ob-
servation 1 immediately implies an ordering in Cm, i.e.,
CBT1 < Cbig SNL. In summary, we have shown in this
lemma that CBT1 < Cbig SNL < CSNIC.

These arguments have proven the bifurcation sequence
in the lower part of the bifurcation diagram arising from
the limit Cm → 0. In the following, we use the unfold-
ing of a second BT point to show the upper part of the
bifurcation diagram.

4. The upper part of the bifurcation diagram,
Cm > CSNIC

Observation 3 The bifurcation diagram contains ex-
actly two BT points. Kirst et al. identified the BT point
for a generic class of conductance-based neuron model
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(including our model group) at a capacitance value that
can be calculated from the input current at which the
fold bifurcation occurs [Ref. [36], Supplemental Material].
With the two fold bifurcation branches occurring in our
model group at input currents ISN0 and ISN1, we find one
unique BT point on each fold branches. Lemma 3 iden-
tified one of them at the BT point (ISN1, CBT1), and the
second BT bifurcation occurs at some point (ISN0, CBT0).
From the BT point at (ISN0, CBT0) arises by normal form
theory a Hopf bifurcation branch and a branch of a small
HOM bifurcation. Both depart in the direction of in-
creasing input IDC, which will be used as before to con-
strain their location.

Observation 4 The second BT point lies in the up-
per part of the bifurcation diagram: The BT point at
(ISN0, CBT0) occurs at CBT0 > CSNIC. We restrict
the region accessible to the Hopf branch that arises
from the BT point at (ISN0, CBT0): A limit cycle bi-
furcation branch cannot cross other limit cycle bifurca-
tion branches (in a planar system), and hence the Hopf
branch cannot pass the SNIC bifurcation line between
(ISN1, CSNIC) and (ISN1, Cbig SNL), nor the big HOM
branch. Furthermore, (A2) demands that no stable fixed
point exists for IDC < ISN1 for Cm = CSNIC, effectively
preventing the Hopf branch to pass this line. The Hopf
branch lies hence either entirely within or outside of the
region bounded by these lines.

We show that the Hopf branch lies outside of this re-
gion by identifying this branch with the excitation block
occurring at Cm = CSNIC: (A2) demands that the excita-
tion block at some IDC > ISN1, i.e., outside of the identi-
fied region. Around the excitation block, Pblock is stabi-
lized by a Hopf bifurcation. This Hopf bifurcation affect

Pblock and hence belongs to the same branch of Hopf bi-
furcations that arises at the BT point at (ISN0, CBT0),
because this is where Pblock is created. With that, the
Hopf branch must lie outside the region denoted above,
and correspondingly also the BT point at its end. We
hence conclude CBT0 > CSNIC.

Lemma 4 The small SNL bifurcation: A second SNL
bifurcation occurs at some Csmall SNL > CSNIC. The
branch of the small HOM bifurcation that arises from
the BT point at (ISN0, CBT0) [see Observation 3] contin-
ues by Lemma 1 in the direction of increasing input IDC.
Hence, we find some Cm = Csmall SNL for which the small
HOM branch connects to the fold bifurcation at ISN1.
At the connection point, the HOM branch must be sta-
ble by Lemma 2. We identify the point (ISN1, Csmall SNL)
as small SNL bifurcation.

For the overall proof, it remains to show the ordering
Csmall SNL > CSNIC. For that, we observe that a limit
cycle exists between the small HOM and the Hopf branch
arising from the BT point and contrast this with the
limit cycle arising from the SNIC bifurcation. As the
Hopf bifurcation has to terminate the limit cycle of the
SNIC bifurcation at CSNIC [(A2)], it cannot terminate
the limit cycle arising from the small HOM bifurcation
at this capacitance value. This only leaves the possibility
for the SNL point to occur at some Csmall SNL > CSNIC.

In summary, we have shown that CBT1 < Cbig SNL <
CSNIC < Csmall SNL. This generic bifurcation structure
occurs with the membrane capacitance Cm as bifurcation
parameter at IDC = ISN1. For a model starting at a SNIC
bifurcation, a variation in the capacitance will thus pass
an SNL bifurcation before a BT point is reached.
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