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Abstract—This paper studies global bifurcation structure of the chaotic neural networks applied to solve the traveling
salesman problem (TSP). The bifurcation analysis clarifies the dynamical basis of the chaotic neuro-dynamics which
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crisis-induced intermittent switches among the ruins of the previous localized chaotic attractors underly the ‘chaotic
search’ for TSP solutions. On the basis of the present study, efficiency of the ‘chaotic search’ to optimization problems is
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1. INTRODUCTION technique of TSP by chaotic dynamics (Nozawa, 1992,
1994; Yamada, Aihara & Kotani, 1993; Yamada & Aihara,
1994; Chen & Aihara, 1995) based on chaotic neural
networks (Aihara, Takabe, & Toyoola, 1990).

In the neural network approach to TSP, every possible
solution of the TSP is mapped into a network of neurons
with (0,1)-binary outputs (Hopfield & Tank, 1985). Opti-
mization by chaotic dynamics searches for a better TSP
solution by following a chaotic wandering orbit. By vis-
iting a variety of network states which correspond to
possible solutions of the TSP, chaotic dynamics continu-
ally keeps searching for a better solution.

The chaotic dynamics in neural network models has
been discussed in the earlier studies in the light of its
potential biological functional role (Skarda & Freeman,

The traveling salesman problem (TSP) is a classic and
famous example of a combinatorial optimization problem

find an exactly optimum solution grows faster than any
finite power of some appropriate measure of the problem
size as long as P # NP (see e.g., Garey & Johnson, 1979;
Lawler, Lenstra, Rinnooy Kan, & Shmoys, 1985;
Reeves, 1993). In order to cope with such difficult pro-
blems, efficient approximate algorithms for finding a
near-optimum solution within a reasonable computa-
tional time have been searched for. As one of such meth-
ods, this paper focuses on an intriguing optimization
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chaotic dynamics. Following the idea of the ‘chaotic
search’ of memories, we call the chaotic dynamics which
seeks a better TSP solution by a successive retrieval of a
variety of TSP solutions ‘chaotic search’ for TSP solutions.

The remarkable ‘chaotic search’ capability to TSP is
demonstrated by Nozawa (1992) who reported that for
94% of the random choices of initial conditions a chaotic
neural network with heuristically tuned values of system
parameters finds optimum solutions of a 10-city TSP
within 1000-iterative steps. Whereas the experimental
studies demonstrate efficiency of the ‘chaotic search’ to
the optimization problem, we remark that they provide
only preliminary results. Due to the complex dynamics of
the chaotic neural network, the underlying dynamical
mechanism of the ‘chaotic search’ is not at all clear.
Hence, the efficiency of the method cannot be grasped
theoretically. : ,

The aim of the present paper is to clarify the
underlying mechanism of the ‘chaotic search’ and to
re-examine the efficiency of the method to optimization
problems. The optimization mechanism is worthwhile
investigating not only for engineering applications but
also for understanding possible information processing
carried out by chaotic dynamics in neural network
models. For our aim, we study global bifurcation struc-
ture of the chaotic neural networks applied to solve TSPs.
The bifurcation study not only clarifies the dynamical
mechanism of the ‘chaotic search’ but also provides a
guideline for tuning the bifurcation parameter value
which gives rise to the network dynamics with efficient
‘chaotic search’. While the guideline applies only to the
bifurcation parameter, it may still reduce the amount of
labor for adjusting many parameter values of the chaotic
neural network by conventional trial and error methods.

The present paper is organized as follows: In Section
2, we review an experimental method for solving TSP by
chaotic neural networks. In Sections 3 and 4, we study
one-parameter bifurcation structure of the chaotic neural
networks applied to 10- and 5-city instances of TSP. In
particular, we follow in detail the merging process of
chaotic attractors via crises (Grebogi, Ott, & York,
1982) and find that the crisis-induced intermittent switch-
ing (Grebogi, Ott, Romeiras, & York, 1987) underlies the
‘chaotic search’ for TSP solutions. In Section 5, on the
basis of the bifurcation studies of Sections 3 and 4, we
discuss the global bifurcation structure of the chaotic
neural network and the practical applicability of the
‘chaotic search’ to the optimization problem. Since our
bifurcation studies deal with chaotic neural networks
applied to a limited number of TSP instances with an
extremely small number of cities, our discussions
cannot be straightforwardly applied to a general class
of TSPs. We believe, however, that the present study
describes the essential features of the bifurcation struc-
ture of the chaotic neural network and provides qualita-
tive understanding of the ‘chaotic search’ mechanism
which may efficiently work for a wide class of TSPs.
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2. EXPERIMENT ON SOLVING TSP BY
CHAOTIC NEURAL NETWORK

This section reviews the experimental method for solving
TSP by chaotic neural networks (Nozawa, 1992). First,
the Hopfield—Tank neural network is introduced to solve
TSP. Second, chaotic neural network is derived by the
Euler’s discretization of the continuous-time Hopfield—
Tank neural network. Third, a technique for observing a
set of temporal firing rates of neurons as a possible TSP
solution is described.

2.1. Hopfield-Tank Approach to TSP

Consider an N-city traveling salesman problem (TSP):
Given an N X N symmetric matrix (d;) of distances
between a set of N cities (i,j = 0,1,...,N — 1), find a
minimum-length tour that visits each city exactly once.

A solution for the TSP can be described in terms of a
N X N matrix V with (0,1)-binary elements {V; = 0,11 i,k
=0,1,....N — 1}. Any complete tour can be represented
by denoting V; =1 if city i is in position k in the tour and
Vi = 0 otherwise. The position k stands for a visiting
order in the tour (see Figure 1). Preference for the matrix
V as a solution to the TSP can be measured by the follow-
ing cost function:

AN—I N-1 AN—I N-1
EV)=5 20 2 Vam 1P +3 3 4 2 V= 1)’

(D

gNoINZIN=1

+ 5 Z Z Z diValViks1+Vie-1)

i=0 j=0 k=0
Whereas the first two terms represent the constraint terms
to satisfy the feasibility condition of TSP and provide
penalties for infeasible solutions for TSP, the third
term represents a total path length of a complete tour
of feasible TSP solutions. The solution matrix V asso-
ciated with a low cost value represents a candidate of a
good TSP solution, since the low cost solution may

satisfy the constraints and provide a short length tour.

optimum solution: Q

order
0129 0123456789
0 | Voo Vo1 Voz - Voo 0/1000000000
..... 1/0000000100
1| Vio Vi Viz = Vi 210000000010
2 v 310000001000
; 40100000000
i 510001000000
Y 60010000000
i 700000010000
: 80000100000
9 | Voo Vor Voo - Voo 910000000001

FIGURE 1. N X N-element binary code V = {V,li,k=0,1,...,N— 1}
as a solution to TSP. Shown right is the optimum solution Q of
the 10-city TSP studied in this paper. The solution represents a
tour in which city 0 is the first city to be visited, city 4 the second, -
city 6 the third, and so forth.
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On the basis of the representation of a TSP solution by
the N X N matrix V, the Hopfield—Tank neural network
(Hopfield & Tank, 1985) is designed as

d _IN-1

R(d zk) —uy + z Z i, j1Vit + Ly Vig = ouy)
‘ j=01I=

2

where 0 < i,k = N — 1, uy, stands for the internal state
variable of the (i,k)-neuron, R stands for the time constant
parameter, and ¢ (x) = 0.5 4+ 0.5tanh(x/B). The synaptic
connections T ; are given by

Ty = — A(S;(1 — 8yp) + 0pu(1 — 6))
—Bd;j(01y 1+ 0k —1) LK) # (G, D, (3)
T, = — 24, 4
I, =2A, 5)

forO0=ikjl=N-—1.
The Hopfield-Tank neural network (eqn (2)) has
potential capability to solve the TSP because:

1. The underlying Lyapunov function is defined as
HV)=EWV)+ 31 'S80 [v¥a = (V)dV which is,
for small (3, nearly equal to the cost functlon of the
TSP (eqn (1)), since >1—o'Sr—o [o*o ™ (V)AV —
08— 0).

2. Since, for small 3, the minimal states of the Lyapunov
function appear nearly with (0,1)-binary outputs
{(Va=0,11i,k=0,1,...,N—1}, final equilibrium
states of eqn (2) may provide feasible TSP solutions
with short total-path length.

2.2, Experiment on Solving TSP by Chaotic Neural
Network

Nevertheless, practical applicability of the Hopfield—
Tank neural network to optimization problems is
crucially limited by the following problems:

1. Choosing the parameter values for (A,B) which con-
trols the strength of the constraint terms against the
tour-length term in eqn (1) is quite difficult. In fact, it
is reported in (Willson & Pawley, 1988; Hegde,
Sweet, & Levy, 1988) that appropriate parameter
values for (A,B) which properly locate feasible TSP
solutions into local minima of the Lyapunov function
H(V) lie in a small restricted space. Most choices of
(A,B) fail to locate feasible TSP solutions as the local
minima and instead produce a large number of local
minima which do not satisfy the constraints of eqn (1).

2. Even with an appropriate selection of the parameter
values (A,B), the Lyapunov function H(V) still has a
large number of feasible solutions from long-length
tours to nearly shortest tours. Due to the existence of
the large number of long length tours which are far
from the optimum tour, the network is frequently
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trapped in local minima with such bad solutions,
depending on the choice of initial conditions.

For (1), various techniques are investigated for deter-
mining good parameter values for (A,B) (Willson &
Pawley, 1988; Aiyer, Niranjan, & Frank, 1990; Ohta,
Anzai, Yoneda, & Ogihara, 1993). For (2), stochastic
dynamics is usually introduced to escape from the local
minima with long length tours (Kirkpatrick, Gelatt, &
Vecchi, 1983). In the chaotic neural network approach
to TSP, the network escapes from the local minima by
chaotic non-equilibrium dynamics (Aihara et al., 1990).
The chaotic neural network for the combinatorial opti-
mization problem is formulated as follows.

First, parameter values for the synaptic connections
(eqns (3)—(5)) are slightly modified as

T ji= —AG;(1 — 0y) + 6y(1 — 6;))
—Bdj(6;5 1 +061k-1), GE)F(G,D  (6)
Ty, = —20A, N
I =204, (8)

where 0 = i,k,jl = N — 1, « is a control parameter for
excitation level of neurons, and w is a parameter for
adjusting the negative self-feedback (Nozawa, 1992;
Chen & Aihara, 1995) or the refractory effect (Aihara
et al., 1990).

Second, with an affine transformation u; =
Z,N:_ol 0 Ty jiPji+ 1y, the Hopfield-Tank neural
network (eqn (2)) is transformed into the following form

d
R(d—tpik> = —pu+ Vi
_IN—1
Vie = 0( Z Z Ty jipji +Izk) 9

j=0 1=

If the connection matrix T is invertible, it is proved by
Pineda (Pineda, 1988) that the attractor structure of the
two equations (2) and (9) is identical. The chaotic neural
network is then derived by the Euler’s discretization of
the continuous-time model (eqn (9)) as

ot
Pian+1)=py(n) + =

—1N-1
( pix(n) + o( Z Z Ekﬂpﬂ('l)'i'lzk))

j=0I=

N — -
=rp,-k(n>+<1—r)a<z Z ,k,,p,l<n>+1,k>
j=0 [=0

(10)

where At is the time step of the Euler’s discretization and
r = 1 — (At/R). The model is equivalent to a single
internal state version of the chaotic neural network
(Aihara et al., 1990; Nozawa, 1992, 1994).

With a set of well selected values of the parameters (A,
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B, », «, 3), the chaotic neural network exhibits chaotic
dynamics which ‘searches’ for TSP solutions. The search
procedure for TSP solutions can be observed by calculat-
ing the temporal firing rates of neurons as follows.

At every time step n, first, we compute short-term aver-
aged firing rates p(n) = {pa(n)= (/)ZiZg pu(n — i,
k=0,1,...,N—1} of neurons with an averaging dura-
tion w. The temporal network firing state p(rn) is then
encoded into an N X N-element binary code J(n)=
{(Ju)i,k=0,1,...,N—1} as

Ju(n)=1[py(n) — p"(n)] 11

where 1[x] =1 (x = 0), 1{x] = 0 (x < 0), and p*(n) is the
N-th largest value among {py(m)li,k=0,1,...,N —1}.
By wandering around a variety of N X N-element
binary codes {J(n)ln =0,1,...} with possible TSP solu-
tions, chaotic dynamics ‘searches’ for a better TSP solu-
tion. In particular, it is reported by Nozawa (1992) that,
for 94% of the random choices of initial conditions,
chaotic neural network with heuristically tuned values
of the system parameters quickly searches for an opti-
mum solution of a 10-city TSP. In the next section, we
study the dynamical basis of such ‘chaotic search’.

3. ONE-PARAMETER BIFURCATION OF THE
CHAOTIC NEURAL NETWORK APPLIED TO
SOLVE 10-CITY TSP

The experiment of applying the chaotic neural network to
solve the Hopfield-Tank’s 10-city TSP is carried out by
Nozawa (1992, 1994) with a set of fixed parameter
values. By taking one of the parameters as a bifurcation
parameter, we study one-parameter bifurcation structure
of the chaotic neural network and clarify the dynamical
mechanism of the Nozawa experiment.

First, we show that the chaotic neural network (eqn
(10)) has symmetry which characterizes the global bifur-
cation structure. Second, a simple coding rule which
enables to map every attractor of the dynamical system
to a possible TSP solution is introduced. Third, one-
parameter bifurcation structure of the chaotic neural net-
work is studied.

3.1. Symmetry in Dynamical Systems

Consider a set of transformations G = {n'oy™ =0, 1,
m=0,...,.N—1, (I,m) # (0,0)} with N X N-dimen-
sional linear transformations of i and » defined as

Y Pk Diet ymoay for0=ik=N-1, (12)

N P> PiW—tymoany fOr0=i,k=N-1, (13)

where o denotes composition.

By using an N X N-dimensional mapping RV —
RN, let us denote the network dynamics of eqn (10) by
p(n + 1) = f(p(n)). Since fog = gof for any g € G (see
Appendix A), the dynamical system is invariant under

L Tokuda et al.

the operation by any g € G. Hence the set of transforma-
tions G provides symmetry of the dynamical system (eqn
(10)). |

The idea of the symmetry is important, because if O =
{p(m)l n = 0,1,...} is any solution of the dynamical sys-
tem, then so is g(0) = {g(p(m))| n = 0.1,...} forall g €
G. In particular, if O is an attractor, then so is g(O) for all
g € G. We then say that g(0O) is conjugate to 0. With
respect to the system symmetry, we can also characterize
an attractor O by the following symmetry group (Golu-
bitsky et al., 1988):

Ao ={g € Glg(0)=0}. (14)

In the sense that the above group measures the degtee of
symmetry of O, we say that an attractor O is a Ao-
symmetric attractor. If Ap = @, we then say that an
attractor O is an asymmetric attractor.

3.2. Coding of Attractors

In the study of high-dimensional dynamical systems
which give rise to multi-stability of many attractors,
introduction of a simple coding of attractors is useful
for a systematic analysis of the system. For instance, in
the study of globally coupled map (Kaneko, 1990, 1991),
a large number of multi-stable attractors are coded by the
clustering conditions, while, in the study of optical
system (Ikeda & Matsumoto, 1987), attractors are
coded by the branching order of the harmonic bifurca-
tions. In the present analysis, every attractor in the neural
dynamical system is coded into a possible TSP solution
as follows.

First, a set of long-term average firing rates
(B = limy—o(UT)Y L Zopu(m)i,k=0,1,..,N—1} s
measured on an attractor {p(n)ln = 0,1,...}. The attractor
is then encoded into an N X N-element binary code
J=1{Jzli,k=0,1,...,N — 1} defined as

Ju=1py—5'] (15)
where p° is the N-th largest value among
{Pyli,k=0,1,...,N—1}.

As is shown in Appendix B, a set of conjugate attrac-
tors {n'oy"(O)I=0,1, m=0,...,N — 1} are coded into
an equivalent TSP solution by this coding, where O =
{p(n)ln = 0,1,...} stands for an asymmetric attractor.

3.3. One-Parameter Bifurcation of the Chaotic Neural‘

Network

Taking r as a bifurcation parameter, let us study one-
parameter bifurcation structure of the chaotic neural net-
work applied to solve the Hopfield—Tank’s 10-city TSP,
where the city locations are given in 2-dimensional coor-
dinates as (0.2439, 0.1463), (0.8488, 0.3609), (0.6683,
0.2536), (0.6878, 0.5219), (0.1707, 0.2293), (0.2293,
0.7610), (0.4000, 0.4439), (0.8732, 0.6536), (0.5171,
0.9414), (0.6195, 0.2634) (Hopfield & Tank, 1985;
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FIGURE 2. 100,000 samples of random initial conditions p(0)  [0,1 ]N XN gre classified into basins of 20 conjugate fixed points {»'0y™ql/=
0,1,m=0,..,9}(q( € RN ><N) denotes a basic fixed point) or other attractors in the chaotic neural network with r = 0.99. The abscissa
indicates the 20 conjugate fixed points and the other attractors, and the ordinate indicates the number of initial conditions included in the

basin of each attractor.

Willson & Pawley, 1988). The values of the parameters
are fixed as (A, B, w, a, B) = (1.0, 1.0, 0.75, 0.05, 0.018)
so that the experimental situation of Nozawa (1992) is
reproduced at r = 0.70.

As is discussed in Section 2, the chaotic neural
network approaches to the continuous-time Hopfield—
Tank neural network when r — 1.0. Hence, parameter
values close to r = 1 are expected to give rise to local
minimum solutions of the Lyapunov function. First, by
setting the parameter value to r = 0.99, we find the local
minimum solutions by a carpet-bombing algorithm.
From 100,000 samples of random initial conditions
which are uniformly distributed over p(0) € [0,11VV,
only a set of 2N conjugate local minima {n'oy™(g)ll =
0,1, m = 0,....N — 1} are found, where g( € ®"*")
denotes a basic local minimum (see Figure 2).

By giving this g as the initial condition at » = 0.89 and
decreasing the bifurcation parameter from r = 0.89 to
r = 0.65, the bifurcation diagram is drawn by observing
the (0,0)-neuron state poy(n) (see Figure 3(a) and (b)).
The successively observed attractors are coded into pos-
sible TSP solutions J and the corresponding cost function
values E(J) defined by eqn (1) are plotted in Figure 3(c).
We remark that until about r = 0.725 the cost function

curve constantly holds the value corresponding to the
optimum-tour length of the TSP. Namely, all the
observed attractors until r = 0.725 are coded as the opti-
mum solution. We denote this optimum solution code by
Q (see Figure 1). :

Figure 3(d) shows the Lyapunov dimension D;
(Kaplan & York, 1987) of the attractors observed in
the bifurcation diagram.

(1) When 0.89 > r > 0.725: In the first stage of this
parameter region, the local minimum g continually exists
until r = 0.87 and then undergoes a cascade of period-
doubling bifurcations leading to a chaotic attractor (see
Figure 3(b)). With a decrease in the bifurcation para-
meter, the chaotic attractor continually increases in
size. Whereas the repeated occurrence of saddle-node
bifurcations gives rise to pairs of stable and unstable
periodic solutions generating periodic windows in the
bifurcation diagram, the stable periodic attractors also
bifurcate into chaotic attractors which merge with the
original chaotic attractor via an interior crisis (Grebogi
et al.,, 1982). Figure 4 illustrates how the unstable
periodic orbits which are born from the period-doubling
bifurcations of the local minimum ¢ underlie the
structure of the chaotic attractors.
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FIGURE 3. A one-parameter bifurcation diagram of the chaotic neural network for the 10-city TSP. The bifurcation parameter value ris
decreased from 0.89 to 0.65. (a) A one-parameter bifurcation diagram observed from the (0,0)-neuron state pgo(n). (b) Enlargement of the
bifurcation diagram of (a). The period-16 attractor bifurcates into period-32, period-64, and so forth into a chaotic attractor. (c) The cost
function values E(J(O,)) defined by eqn (1) for the successively observed attractors O, in (a). The Lyapunov dimension D, of the

successively observed attractors O, in (a).

Let us denote the successively observed attractors in
Figure 3(a) by O,, which depends upon the value of the
bifurcation parameter 7. Then the system symmetry implies
that a conjugate attractor n'oy™0,) also undergoes a

series of same bifurcations with O, in this parameter
region. Note that a conjugate attractor nlo'y'"(O,)
described above is continually coded as 5'oy™(Q), which
represents the optimum solution (see Appendix B).
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FIGURE 4. Period-2, 4, and 8 orbits born from the period-
doubling bifurcations of the local minimum q. The figure dis-
plays how these unstable periodic orbits underly the structure
of the chaotic attractors at r = 0.775, 0.750 and 0.725.

At most stages of their successive bifurcations, only
the 2N conjugate attractors {n’o'y’”(O,)ll =01 m=
0,...,N — 1} are the observable attractors of the system.
For instance, for systems with r = 0.89, 0.85, 0.78, 0.75,
our numerical experiments show that all the initial con-
ditions on a hyper-surface: (pgo,po1) € [0,11 X [0,1], po =
Pos = -+ = pgg = 0 can be classified into basins of the
conjugate attractors {n'oy™(0,)! [=0,1,m=0,....N — 1}
(see Figure 5(a)—(f)).

(2) When 0.74 > r: As is shown in Figure 3(d), the 2N
conjugate chaotic attractors increase their size as the
bifurcation parameter is further decreased. When the
parameter reaches a value of about r = 0.725, the thick
chaotic band suddenly disappear from the bifurcation
diagram of Figure 3(a). It seems that the 2N conjugate
chaotic attractors collide with each other and merge as a
single attractor via symmetry-increasing crises (Chossat
& Golubitsky, 1988a, b).

3.4. Switching Among Previous Localized Chaotic
Attractors and Chaotic Search for TSP Solutions

Let us study the network dynamics after the mergers of
the 2N conjugate chaotic attractors via crises. The crises
may give rise to intermittent switching among the pre-
vious localized chaotic attractors (Grebogi et al., 1987).
By following the details of the switches, we find that the
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crisis-induced intermittent switches are the dynamical
bases of the ‘chaotic search’ for TSP solutions.
Recalling that the basic attractors O, observed in the
bifurcation diagram in Figure 3(a) have been continually
coded as the optimum solution Q, we denote the set of the
conjugate chaotic attractors {nlo'y”'(O,)| =01 m=

0,...,N — 1} just before the crises by {n'oy"(Q)| | =

0,1, m =0,...,N — 1}. Then, we can follow the details
of the switches among the ruins of the previous localized
chaotic attractors {nlo'y'”(Q)} by calculating the tem-
poral network firing state J(n) defined by eqn (11) with
an averaging duration w. For instance, if J(n) =
n'oy™(Q), then we may consider that the temporal net-
work firing state at the time step »n is calculated over the
duration during which the system is around the (I,m)-
previous localized chaotic attractor n’o'y’"(Q).

Figure 6(a) shows a sequence {J(n)ln = 0,1,...} of the
temporal network dynamics with r = 0.73. The dynamic
behavior is from a given random initial condition and the
averaging duration is set to w = 500. Starting from Q,
cyclic switches among the previous localized chaotic
attractors as

"Q—y(Q)— = (Q)—=Y" Q)= (Q)—Q"
(16)

are recognized. From a different initial condition, cyclic
switches as

"p(Q)—10Y(Q)— - —noy"(Q)—noy" T (Q)

— -0y’ (Q)—1(Q)" (17)

are also observed. This implies that a first crisis gives
birth to two attractors (16) and (17), which are conjugate
with respect to 7.

Figure 7 shows an average of the residence time 7,
(Grebogi et al., 1987), in which the network stays in one
of the previous localized chaotic attractors {5'oy™(Q)! I
=0,1,m=0,....N — 1}. At the initial stage of the crisis,
switching rarely occurs and the residence time 7, is
inordinately long. As is explained in detail below, with
a decrease in the bifurcation parameter, the previous
localized chaotic attractors get more tightly connected
to each other. This shortens the residence time 7,, in
Figure 7.

For 0.73 = r = 0.737, the system exhibits cyclic

~ switching as (16) and (17). As the crisis proceeds for

0.66 < r < 0.73, reversible switches such as
"Q=yQ) = =9"Q) =7""'(Q)

= =7Q=0 (18)

and

"5(Q) = 1oy(Q) = -+ = 10y"(Q) = noy" T (Q)

= =n0Q) = Q)" (19)

are observed (see Figure 6(b)). Irregular switches which
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(a)r=039 (dyr=075
(b)r=0%85 (e) enlargernent of the
square part of (d)
(cir=078 (f) enlargerment of the
square part of (8]
FIGURE 5. On the hyper-surface with (Pgo,Po1) € [0,1] X [0,1], Poz = Pos = *** = Pss = 0, basin portraits of the conjugate attractors p'oy™(O)I

=0,1, m=0,...,N— 1} are drawn for four systems: (a) r= 0.89, (b) r= 0.85, (c) r = 0.78, and (d) r = 0.75. The abscissa indicates po € [0,1]
and the ordinate indicates p; € [0,1]. While (e) shows an enlargement of the square part: (po.Pe1) € [0.65,0.85] X [0.65,0.85] of (d), (fy
shows a further enlargement of the square part: (poo,Po1) € [0.707,0.757] X [0.707,0.757] of (e). The basic attractors O, are adopted
from the ones observed in the bifurcation diagram of Figure 3(a). Basins of {n'oy™0)l 1=0,1, m=0,...,N — 1} are colored as follows:
Basins of: 0,,77(0,), 107*(0)) (yellow); v(0,), v*(0,), 70v*(0;) (red); 1*(0,), v°(0,), 10°(0;) (green); 1*(0,), (O, O+ (O,) (black); v*(0)),

107(0), 10v%(0)) (blue) v5(0,), 70v*(0,), 10v*(0,) (skyblue); v*(0,), 10+°(O;) (purple).

skip the intermediate states as "y(Q) = 'y3(Q)" or
"no'yS(Q) = no'yg(Q)" are also observed for systems
with small r.

For r = 0.66, the two conjugate attractors (18) and
(19) finally merge into a fully-connected attractor via a

second crisis. Chaotic dynamics which ‘searches’ for all
the 2N previous localized chaotic attractors is observed
in this region (see Figure 6(c)).

We remark that, by the first and the second crises, the
originally asymmetric attractors {7'0y"™(0,)| [ = 0,1,




Global Bifurcation Structure of Chaotic Neural Networks 1681
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FIGURE 6. Sample sequences {{n)| n = 0,1,...} of the temporal network dynamics with (a): r= 0.730, (b): r=0.702, and (c): r = 0.666 are
shown. The averaging duration of eqn (11) is set to w = 500. The temporal network state is displayed in terms of a set of overlaps
between Jn) and the previous localized chaotic attractors {n'oy™@)l 1 = 0,1, m = 0,...,9}, where the overlap between n) and
2'0y™(Q) is defined as
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FIGURE 7. The average of residence time 7.,
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m = 0,....N — 1} not only increase in size but also
increase in symmetry from @-symmetry to G-symmetry.
This is a symmetry-increasing bifurcation phenomenon
of chaotic attractors which are commonly observed in
dynamical systems with symmetry (Grebogi et al.,
1987; Chossat & Golubitsky, 1988a, b).

3.5. Remarks on the Chaetic Itinerancy

In recent studies of high-dimensional dynamical systems,
dynamical phenomena called as ‘chaotic itinerancy’
(Ikeda et al., 1989; Kaneko, 1990, 1991; Tsuda, 1991a, b,
1992) have been extensively studied. The chaotic itiner-
ancy is characterized by high-dimensional chaotic beha-
vior that makes intermittent transitions among a variety
of ‘attractor ruins’ which are quasi-stationary sates with
effectively low degrees of freedom. Chaotic itinerancy
has been discovered in optical systems (Ikeda et al.,
1989), coupled map models (Kaneko, 1990, 1991) and
model neural networks (Tsuda, 1991a, b, 1992). As is
initially suggested by Nozawa (1992, 1994), the present
‘chaotic search’ dynamics for optimization problems can
also be considered as the chaotic itinerancy, although
the dynamical mechanism such as the structure of the
‘attractor ruins’ has not been well described. Our
bifurcation analysis clarifies the dynamical basis of
the chaotic itinerancy in the ‘chaotic search’ dynamics
in the context of the crisis-induced intermittent switching
among the ruins of the previously stable chaotic
attractors.

It should also be remarked that, in the study of globally
coupled map, although no detailed analysis is presented,
Kaneko (1990, 1991) suggested crisis-induced inter-
mittency as the dynamical mechanism of the chaotic
itinerancy. In the study of spatial pattern dynamics in
locally coupled map, Kaneko (1989) also presented a
bifurcation scenario for the onset of pattern compe-
tition intermittency via crisis, although the pattern com-
petition intermittency is not directly related with the
chaotic itinerancy. Our bifurcation analysis presents a
practical example of a considerably simple bifurcation
phenomenon for the onset of ‘chaotic itinerancy’ via
crisis.
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5

(a) Optimum tour: Q)

|

(b) Second-optimum tour: Q®

FIGURE 8. Locations of the 5-cities, which are given in 2-dimen-
sional coordinates as (0.3676, 0.3477), (0.4234, 0.1931), (0.5864,
0.2097), (0.3830, 0.9543), (0.4356, 0.8893): (a) represents an opti-
mum tour Q" with a total path length of d = 1.714747; (b) repre-
sents a second-optimum tour Q® with a total path length of d =
1.729555.

4. APPLICATION TO 5-CITY TSP

In Section 3, we have seen that the crisis-induced switch
is the dynamical basis of the ‘chaotic search’ in the
10-city TSP instance. Whereas the previous example
shows ‘chaotic search’ among equivalent solutions to
the TSP, by using a 5-city TSP instance, this section
shows another example which exhibits ‘chaotic search’
among the optimum solution and the second-optimum
solution to TSP.

4.1. One-Parameter Bifurcation of 5-City TSP

As an instance for TSP, 5-city locations were randomly
generated (see Figure 8). The parameter values for the

TABLE 1
For 100,000 samples of random initial conditions which are uniformly distributed over p(0) € [0,1]%"®, basin distribution rates to the two
sets of conjugate attractors {y'0y™(O)| i=1,2, /= 0,1, m =0,...,4} are calculated for systems with r=0.999, r= 0.900, r = 0.875, r = 0.850
and r = 0.825. The basic attractors O!" and 0'? are those observed in the bifurcation diagrams of Figure 9(a) and (c), respectively

Bifurcation parameter

Total basin volumes of
fn'oy™OMI 1=0,1, m=0,...,4}

Total basin volumes of
{n'oy™0P1 1=0,1, m=0,...,4}

r=0.999 71.538 [%]
r=0.900 72.966 [%)]
r=0.875 75.857 [%)]
r=0.850 75.304 [%)]
r=0.825 58.758 [%]

28.462 [%)]
27.034 [%]
24.143 [%)]
24.696 [%)]
41.242 [%]
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chaotic neural network are set to (4, B, w, &, 8) = (1.5, (9)) gives rise to feasible TSP solutions as the local
1.0, 0.80, 0.05, 0.018). The parameter values are slightly minima.
modified from the 10-city instance so that for r = 1.0 the First, for r = 0.999, we find the local minimum solu-
continuous-time Hopfield-Tank neural network (eqn tions of the continuous-time Hopfield—Tank neural
(@ (b)
0.10 '
E
p24 1.74
1.73
0.05
1.72
0.00 1.71
1.70 v
0.90 0.85 r 0.80
(c) Ce (d)
0.10 -
E
1.74
1.73
1.72
1.71
1.70

0.90 0.85 r 0.80

FIGURE 9. A one-parameter bifurcation diagram for the 5-city TSP. The bifurcation parameter valueris decreased from 0.91 to 0.775. (a) A
one-parameter bifurcation diagram drawn from a local minimum g (b) The cost function values E(J(O{V)) for the successively observed
attractors O{" in (a). (c) A one-parameter bifurcation diagram drawn from a local minimum q®. (d) The cost function values E(J(O®)) tor
the successively observed attractors O in (c).
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FIGURE 10. Sample sequences {Xn)! n = 0,1,...} of the temporal network dynamics with (a) r = 0.806 and (b) r = 0.798 are shown. The
averaging duration of eqn (11) is set to » = 300. The temporal network state is displayed in terms of a set of overlaps between An)
and the previous localized chaotic attractors {s'0y™(Q")| i = 1,2, I = 0,1, m = 0,...,4}, where the overlap between Xn) and 1'0y"(Q") is
defined as
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1686

averaged switch period: T

L Tokuda et al.

Tsi

1e+08 p

le+07
0.8 0,805

0,81

bifurcation parameter r

FIGURE 11. The averages of switch durations {r4 _. », 72 _ 1, 7g} are drawn with increasing the value of the bifurcation parameter r,
where 7, _ , denotes the switch duration from Q™ to @@, 7, _. ; denotes that from @® to Q, and g denotes that from »*0y/(Q") to
2™0y™(QP) ((k,) # (m,n)). With a decrease in the bifurcation parameter, first, switch from @® to Q" is observed at r = 0.8176. Then
switch from @V to @Q® is recognized at r= 0.8166. Finally, switches among the conjugate attractors {n'0y™(Q")| i=1,2,/=0,1,m=0,...,4}

are observed at r = 0.804.

network by a carpet-bombing algorithm. For 100,000
samples of random initial conditions which are uniformly
distributed over p(0) € [0,11"Y, two sets of 2N conju-
gate fixed points {5'oy™ (¢l =0,1,m=0,....N — 1}
and {n'oy"(@®)!1=0,1,m=0,...,.N — 1} are found (see
Table 1). Whereas ¢ is coded as the optimum solution
0", ¢ is coded as the second-optimum solution o¥
(see Figure 8).

By decreasing the value of the bifurcation parameter r
from 0.91 to 0.775, two bifurcation diagrams are drawn
respectively from ¢ and ¢® by observing a single
neuron state (see Figure 9(a) and (c)).

In Figure 9(a)-(d), essentially similar bifurcation
phenomena to the 10-city instance are observed. Namely,
in the first stage of the bifurcation diagram, each local
minimum ¢® (i = 1,2) undergoes a cascade of period-

doubling bifurcations leading to a chaotic attractor.
With a further decrease in the bifurcation parameter,
each chaotic attractor increases in size. Whereas the
repeated occurrence of saddle-node bifurcations gives
rise to pairs of stable and unstable periodic solutions
generating periodic windows in the bifurcation diagram,
the stable periodic attractors also bifurcate into chaotic

attractors which soon merge with the original chaotic
attractor.

Let us denote the successively observed attractors in
each bifurcation diagram as 0% (i = 1,2). Their bifurca-
tion phenomena are peculiar at the following points:

1. In each bifurcation diagram, oY (i=1,2) are conti-
nually coded as Q% (see Figure 9(b) and (d)).

2. The basins of the two sets of conjugate attractors
(noy" 0N 1i=1,2, 1=0,1, m=0,.,N-1}
almost always occupy the entire state space (see
Table 1).In other words, bifurcation phenomena
which give birth to attractors corresponding to TSP
solutions other than Q" and Q® are rarely observed. -

As the bifurcation parameter is further decreased, the
chaotic attractors O (i = 1,2) enlarge their sizes. At the
parameter value of » = 0.805, first, 0% disappears from
the bifurcation diagram via a boundary crisis to O
Then O, collides with the ruin of the previous chaotic
attractor O? via an interior crisis. The merger of O{" and
0, gives rise to a single attractor O%? which exhibits
intermittent switching among Q' and Q® (see Figure

10(a)). Finally, for the parameter region of r < 0.805, the
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conjugate attractors {n'oy™(O0" )l =0,1,m =0,...,
N — 1} merge into a single attractor via symmetry-
increasing crises. The intermittent switches, or ‘chaotic
search’, for all the previous localized chaotic attractors
{(n'oy™(0™)li = 1,2, 1 = 0,1, m = 0,....N — 1} are
observed here (see Figure 10(b)). The detailed merging
processes are also read from Figure 11, which shows the
average of switch duration {7, -, 72— 1, Ty} drawn with
increasing the value of the bifurcation parameter r, where
71 — » denotes a switch duration from 0Vt 09, 7,
denotes a switch duration from QO’ to Q(l), and 7g
denotes a switch duration from 7oy (Q®) to

7"oy"(QP) (k) # (m,n)).

4.2. Efficiency of the Chaotic Search

Let us discuss the efficiency of the chaotic search for the
two TSP instances with small numbers of cities studied in
Sections 3 and 4. In case of the 10-city instance, inter-
mittent switch occurs only among a set of equivalent TSP
solutions and hence efficiency of the ‘chaotic search’ for
a better solution can not be discussed. For the 5-city
instance, chaotic search occurs among the optimum solu-
tion Q™ and the second-optimum solution Q®. In this
case, efficiency of the chaotic search can be discussed in
terms of a transition probability between 0" and Q@.
The transition probability T(Q” — Q%) (Kaneko, 1989)
represents a probability of transition from 0% to Q¥
when the system is trapped in solution Q. If the transi-
tion probability from 0@ to QW is higher than that from
0" to 0@, then transitions to optimum solution Q"
occur more frequently than ones to second-optimum
solution Q" and hence the dynamics can be considered
to be efficient to search for the optimum solution. For r =
0.80, the ratio of the transition probabilities T(Q® —
0®) and T(Q® — Q@) is calculated as T(Q® — Q™)
QY — Q(z)) = 3.31, which indicates the higher transi-
tion probability to the optimum solution Q™. Therefore
we have confirmed efficiency of the chaotic search for
the optimum solution in the 5-city instance, although the
number of cities is extremely small.

5. CONCLUSIONS AND DISCUSSIONS

5.1. Bifurcation Scenario

On the basis of the several numerical studies, a simple
bifurcation scenario is obtained for chaotic neural net-
works applied to solve TSPs.

First, a one-parameter family of dynamical systems
leading the continuous-time Hopfield—Tank neural net-
work to the chaotic neural network is formulated. With a
decrease in the bifurcation parameter, local minimum
solutions of the Hopfield—Tank neural network undergo
period-doubling bifurcation routes leading to chaotic
attractors. The chaotic attractors are locally distributed
in the state space. As the bifurcation parameter is further
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decreased, the localized chaotic attractors increase in size
and eventually merge into a single global attractor via
crises. The merging process gives rise to intermittent
switching among the previous localized chaotic attrac-
tors. Since the previous localized chaotic attractors are
interpreted as possible TSP solutions by introducing a
simple coding rule, our bifurcation studies find that the
crisis-induced intermittent switches underly the ‘chaotic
search’ for TSP solutions.

We remark that the present bifurcation scenario is
obtained only from two instances of small-scale TSP
and may not necessarily provide a general bifurcation
theory of the chaotic neural networks for the optimiza-
tion problem. We believe, however, that our bifurcation
scenario is still valid for describing the essential features
of the chaotic neuro-dynamics which may efficiently
work for a wide class of TSPs, since we have confirmed
essentially similar bifurcation phenomena in several
other instances of TSP.

5.2. Efficiency of the Chaotic Search

On the basis of our bifurcation scenario, let us discuss the
optimization capability of the ‘chaotic search.” The
observed bifurcation phenomena are peculiar in the
sense that they rarely give birth to attractors correspond-
ing to TSP solutions except those observed in the local
minimum solutions of the underlying Hopfield—Tank
neural network. It is most probable that the previous
localized chaotic attractors in the ‘chaotic search’ region
are born from period-doubling bifurcations of the local
minimum solutions of the Hopfield—Tank neural net-
work and hence they have almost one-to-one correspon-
dence with the local minima. This bifurcation property
can be also observed in other instances including higher-
dimensional TSPs, although theoretical understanding of
this property is an important open question. In the sense
that the chaotic dynamics seeks for a better TSP solution
among local minimum solutions of the Hopfield—Tank
neural network without being trapped in one solution, our
bifurcation scenario implies the ‘chaotic search’ capa-
bility which overcomes the weakness of the Hopfield—-
Tank search.

Our bifurcation studies also imply that the efficiency
of the ‘chaotic search’ strongly depends upon the com-
plex linkage structure of a variety of previous localized
chaotic attractors. A large number of dynamical paths
leading to a global minimum may produce efficient
search for the global minimum, whereas a large number
of paths leading to local minima may provide poor
results. From this viewpoint, we have studied the ‘chaotic
search’ capability for optimum solution by calculating
the transition probabilities among the switching
solutions. For the 10-city instance, ‘chaotic search’
occurs only among a set of equivalent global minimum
solutions and hence efficiency of the chaotic switch from
local minima to global minimum can not be discussed.
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For the 5-city instance, chaotic search occurs among
the optimum solution and the second-optimum solu-
tion. The transition probability analysis clarified that the
chaotic switch to the optimum solution occurs more fre-
quently than that to the second-optimum solution. We
therefore confirmed the efficiency of the chaotic search
for global minimum solution in this toy problem with 5
cities.

We remark that the present study on the efficiency of
the ‘chaotic search’ provides only preliminary results
because our experiments deal with only two small-
scale instances of TSP. It is an important future problem
to examine the efficiency of the chaotic search for a
variety of TSP instances including large-scale problems
with further statistical studies based on the calculation of
the transition probabilities or other statistical quantities.

It is also necessary to compare the chaotic search algo-
rithm with conventional optimization algorithms such as
heuristic algorithms (e.g., Lawler et al., 1985), genetic
algorithms (e.g., Goldberg, 1989), and so forth and
clarify disadvantages as well as advantages of the chaotic
search method. We also remark that our bifurcation ana-
lysis provides an insight on the efficiency of the chaotic
annealing algorithm (Chen & Aihara, 1995), since the
annealing procedure is primarily dependent upon the
global bifurcation structure of the chaotic neural net-
work. In the light of the annealing schedule, we can
show that an ‘infinitely slow annealing’ algorithm does
not necessarily provide an optimum result and an ‘adap-
tive chaotic annealing’ algorithm (Tokuda et al., 1996)
works rather fast and efficiently. The detailed result will
be reported elsewhere.

5.3. Parameter Tuning

Another problem to be settled for practical application of
the present method is the difficulty of choosing good
parameter values for (4, B, «, w, r) that give rise to
efficient ‘chaotic search’. In this paper, we have adopted
the parameter values of Nozawa (1992) for the 10-city
TSP and slightly adjusted the parameter values for the 5-
city TSP. Whereas there is no systematic way for deter-
mining good parameter values for (A, B, «, w), the pre-
sent bifurcation analysis at least provides a hint for
tuning the bifurcation parameter value r. Namely, by
following the bifurcation procedure of one of the local
minima of the Hopfield—Tank neural network, one may
find the bifurcation parameter region where the chaotic
attractors merge with others via a series of crises and an
efficient ‘chaotic search’ takes place. This reduces the
amount of labor for adjusting the bifurcation parameter
value r by trial and error methods.

5.4. Chaotic Neural Network as a Coupled Map

Finally, it is also an interesting problem to consider the
present chaotic neuro-dynamics from the view point of
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coupled map studies (Kaneko, 1989, 1990, 1991). As is
mentioned in (Kaneko, 1990, 1991; Tsuda, 1991a;
Nozawa, 1992), a class of neural network models can
be considered as a globally coupled map (Kaneko,
1990, 1991) and the present model can be considered
as a globally coupled map with non-uniform couplings,
although modeling of chaotic neural networks has its
own research history (Aihara & Matsumoto, 1986;
Aihara, Kotani, & Matsumoto, 1989; Aihara, 1990).
The main difference of the dynamical structure of the
present non-uniformly coupled map and the uniformly
coupled maps (Kaneko, 1990, 1991) is the degrees of
the system symmetry. Compared to the uniform model
which has full permutation group Sy as the symmetry
(Kaneko, 1990, 1991), the present model has a much
lower degree of symmetry due to the non-uniform
couplings. As is presented in the studies of the uniformly
coupled map models (Kaneko, 1990, 1991), higher sym-
metry in the dynamical system produces more complex
and rich dynamical phenomena induced by the multi-
stability of a large number of conjugate clustering
attractors. This might be the reason why the present
model as a globally coupled map has a simpler global
bifurcation structure rather than the uniformly coupled
models. A future problem will be to study how the degree
of uniformity in a globally coupled map affects the com-
plexity of the global dynamical structure.
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APPENDIX A: SYMMETRY IN DYNAMICAL
SYSTEMS

In this Appendix, we show (1): foy = yof and (2): fon = 5of. (1) and (2)
immediately lead to fo(n'oy™ = (n'oy™)of for I = 0,1 and m = 0,...,
N-1.

(1) For any p € RV, foy(p) = yofip) because

j=

N-1N-1
oyl =rpir+1+01 —r)a(z;) lgo T, jiPj 141 +1> (A.D

j=

N-1N—-1
=TPik+1 + (1 - r)o ( Z I'ZO Tik, il - 1P jiprime +1) (A2)

N—-1N-1

=7 +(1 —r)a(Zo P Y +1) a3

j=

={f®}i+1={vf@)}x (A4)

for 0 < i,k < N — 1. The indices in {/;} are dropped since the set of the
parameters {I;} takes a same value by eqn (8). From eqns (A.2) to
(A.3), we have used Ty j_; = Ty, s, Which is the property of the
synaptic connections defined by eqns (6)—(7).

(2) For any p € RV, fon = yof because

N—-IN-1

{fon@}ie=rpin-r+( —’)U(Z :Z(') Ty, jlij—l+I) (A5)

j=0

N_IN—1
ZO zg'o Ty, w—rpPy +1 > (A.6)

=rPiN—k+(1—’)0(

N-1IN-1

=rpin—xt+(1-r)o (JZ;) rZ-OTiN—k, P +1> (A7)

={f@kin-r={nfP)}x (A.8)
for0 =ik=N—1.Fromeqn (A.6) to eqn (A.7), we have used Ty jv-1}
= Tiy_x ji»- Which is the property of the synaptic connections defined by
eqns (6)—(7).

APPENDIX B: CONJUGATE ATTRACTORS
WITH AN EQUIVALENT TSP SOLUTION

This Appendix shows how the system symmetry gives rise to 2N con-
jugate attractors representing an equivalent TSP solution.

Suppose there exists an asymmetric attractor O = {p(n)ln = 0,1,...}
which is coded as a feasible TSP solution J(3), where
b:limT_m(llT)Z:;ép(n) represents a long-term average firing rate
of O.

Forall/=0,1andm=0,...,N — 1, along-term average firing rate of
a conjugate attractor 1;’07"‘(0) (= {n’o'y”'((p(n))| n=0,1,...}) can be
written as n'oy™(3) because a linear mapping »'oy™ transforms p into

n'oy"(3) = limy — (DX, on'oy™(p(n). Since J(n'oy"@) =
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7'0y™J(B)), the 2N conjugate asymmetric attractors {5'oy™(O)ll = 0,1,
m=0,...,N — 1} are coded respectively as {n’oq/"‘(](ﬁ))ll =01, m=
0,...N—1}.

It is well known that the 2N codes {#'oy™J ()l =0,1,m=0,...,
N — 1} represent an equivalent TSP solution (Hopfield & Tank, 1985).

I Tokuda et al.

This is because the transformations v and # do not change the basic tour
configuration. Namely, y only shifts a choice of an initial city in a
visiting order of the cities and 5 changes a choice of a visiting direction
of the cities. Hence, the 2N conjugate attractors {5'oy™(O)l =0,1, m =
0,...,N — 1} are coded into an equivalent TSP solution..
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