Preprints

  1. Time-of-day effects of drugs revealed by high-throughput deep phenotyping
    C Ector, C Schmal, J Didier, S Landtsheer, A Finger, F Müller-Marquardt, J Schulte, T Sauter, U Keilholz, H Herzel, A Kramer, A E Granada
    submitted (2023) Download Preprint

  2. Coupling allows robust redox circadian rhythms despite heterogeneity and noise
    M Olmo, A Kalashnikov, C Schmal, A Kramer, H Herzel
    submitted (2023) Download Preprint

  3. Optimal time frequency analysis for biological data - pyBOAT (2020)
    G Mönke, F A Sorgenfrei, C Schmal*, A E Granada* (* equal contribution). Download Preprint
    Software available at GitHub and through Anaconda

Journal Articles

  1. Alternative polyadenylation factor CPSF6 regulates temperature compensation of the mammalian circadian clock
    C Schmal*#, B Maier*, R Ashwal-Fluss, O Bartok, A Finger, T Bange, S Koutsouli, M Robles, S Kadener, H Herzel, A Kramer, (* equal contribution; # corresponding)
    PLOS Biology 21(6):e3002164 (2023) Download Preprint

  2. The seasons within: a theoretical perspective on photoperiodic entrainment and encoding
    Christoph Schmal
    Journal of Comparative Physiology A (2023). https://doi.org/10.1007/s00359-023-01669-z Download Preprint

  3. Arabidopsis thaliana GLYCINE RICH RNA-BINDING PROTEIN 7 interaction with its iCLIP target LHCB1.1 correlates with changes in RNA stability and circadian oscillation
    M Lewinski, A Steffen, N Kachariya, M Elgner, C Schmal, N Messini, T Köster, M Reichel, M Sattler, K Zarnack, D Staiger
    Plant Journal (2023). https://doi.org/10.1111/tpj.16601

  4. Are circadian amplitudes and periods correlated? A new twist in the story
    M Olmo, C Schmal, C Mizaikoff, S Grabe, C Gabriel, A Kramer, H Herzel
    F1000Research 12:1077 (2023) Download Preprint

  5. Weak synchronization can alter circadian period length: Implications for aging and disease conditions
    J Myung, S Hong, C Schmal#, Helene Vitet, Mei-Yi Wu
    Frontiers in Network Physiology 2:1076702 (2023)

  6. Coupling in biological systems: Definitions, mechanisms, and implications
    C Schmal#, S Hong, IT Tokuda, J Myung# (# corresponding)
    Frontiers in Network Physiology 2:1076702 (2022)

  7. Analysis of complex circadian time series data using wavelets
    C Schmal#, G Mönke, A E Granada (# corresponding)
    In: Solanas, G., Welz, P.S. (eds) Circadian Regulation. Methods in Molecular Biology, vol 2482. Humana, New York, NY. (2022) Download Preprint

  8. Principles underlying the complex dynamics of temperature entrainment by a circadian clock
    P Burt*, S Grabe*, C Madeti*, A Upadhyay, M Merrow, T Roenneberg, H Herzel, C Schmal# (* equal contribution; # corresponding)
    iScience 24: 103370 (2021) Download Preprint

  9. CHRONO and DEC1/DEC2 compensate for lack of CRY1/CRY2 in expression of coherent circadian rhythms but not in generation of circadian oscillation in the neonatal mouse SCN
    D Ono, K-I Honma, C Schmal, T Takumi, T Kawamoto, K Fujimoto, Y Kato, S Honma
    Scientific Reports 11:19240 (2021)

  10. Nonlinear phenomena in models of the circadian clock
    I vSoest*, M dOlmo*, C Schmal*, H Herzel (* equal contribution)
    Journal of the Royal Society Interface 17:20200556 (2020)

  11. Clocks in the Wild: Entrainment to Natural Light
    C Schmal, H Herzel, J Myung
    Frontiers in Physiology 11:272 (2020)

  12. Conceptual models of entrainment, jet-lag, and seasonality
    IT Tokuda, C Schmal, B Ananthasubramaniam, H Herzel
    Frontiers in Physiology 11:334 (2020). Download Preprint

  13. Amplitude effects allow short jetlags and large seasonal phase shifts in minimal clock models
    B Ananthasubramaniam, C Schmal, H Herzel
    Journal of Molecular Biology 432(12):3722-3737 (2020). Download Preprint

  14. Weak Coupling Between Intracellular Feedback Loops Explains Dissociation of Clock Gene Dynamics
    C Schmal, D Ono, J Myung, JP Pett, S Honma, K-I Honma, H Herzel, IT Tokuda
    PLoS Computational Biology 15(9): e1007330 (2019). Download Preprint

  15. The choroid plexus is an important circadian clock component
    J Myung*, C Schmal*, S Hong*, Y Tsukizawa, P Rose, Y Zhang, MJ Holtzmann, E DeShutter, H Herzel, G Bordyugov, T Takumi (* equal contribution)
    Nature Communications 9(1): 1062 (2018).

  16. Measuring Relative Coupling Strength in Circadian Systems
    C Schmal, ED Herzog, H Herzel
    Journal of Biological Rhythms 33(1): 84-98 (2018)

  17. Moran’s I quantifies spatio-temporal pattern formation in neural imaging data
    C Schmal, J Myung, H Herzel, G Bordyugov
    Bioinformatics 33(19), 3072-3079 (2017)

  18. Lymphocyte Circadian Clocks Control Lymph Node Trafficking and Adaptive Immune Responses
    D Druzd, O Matveeva, L Ince, U Harrison, W He, C Schmal, H Herzel, AH Tsang, N Kawakami, A Leliavski, O Uhl, L Yao, LE Sander, CS Chen, K Kraus, A deJuan, SM Hergenhan, M Ehlers, B Koletzko, R Haas, W Solbach, H Oster, C Scheiermann
    Immunity 46, 1-13 (2017)

  19. The Plant Leaf Movement Analyzer (PALMA): A Simple Tool for the Analysis of Periodic Cotyledon and Leaf Movement in Arabidopsis thaliana
    L Wagner, C Schmal, D Staiger, S Danisman
    Plant Methods 13:2. (2017)

  20. A Theoretical Study on Seasonality
    C Schmal, J Myung, H Herzel, and G Bordyugov
    Frontiers in Neurology 6:94. (2015)

  21. Modeling and Simulating the Arabidopsis thaliana Circadian Clock Using XPP-AUTO
    C Schmal, JC Leloup, and D Gonze
    Methods in Molecular Biology Volume 1158, 337-358 (2014)

  22. A Circadian Clock Regulated Toggle-Switch Explains AtGRP7 and AtGRP8 Oscillations in Arabidopsis thaliana
    C Schmal, P Reimann, and D Staiger
    PLoS Computational Biology 9(3): e1002986 (2013)

  23. Boolean Networks with Robust and Reliable Trajectories
    C Schmal, TP Peixoto, and B Drossel
    New Journal of Physics 12, 113054 (2010)

Monographies